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Abstract
Background: Progression through the cell cycle is accompanied by tightly controlled regulation of transcription.
On one hand, a subset of genes is expressed in a cell cycle-dependent manner. On the other hand, a general
inhibition of transcription occurs during mitosis.

Genetic and genome-wide studies suggest cell cycle regulation at the level of transcription initiation by protein
complexes containing the common DNA-binding subunit TATA binding protein (TBP). TBP is a key player in
regulating transcription by all three nuclear RNA polymerases. It forms at least four distinct protein complexes
with TBP-associated factors (TAFs): SL1, B-TFIID, TFIID, and TFIIIB. Some TAFs are known to remain associated
with TBP during the cell cycle. Here we analyze all TAFs and their phosphorylation status during the cell cycle
using a quantitative mass spectrometry approach.

Results: TBP protein complexes present in human cells at the G2/M and G1/S transitions were analyzed by
combining affinity purification with quantitative mass spectrometry using stable isotope labeling with amino acids
in cell culture (SILAC). Phosphorylations were mapped and quantified after enrichment of tryptic peptides by
titanium dioxide. This revealed that subunit stoichiometries of TBP complexes remained intact, but their relative
abundances in nuclear extracts changed during the cell cycle. Several novel phosphorylations were detected on
subunits of the TBP complexes TFIID and SL1. G2/M-specific phosphorylations were detected on TAF1, TAF4,
TAF7, and TAFI41/TAF1D, and G1/S-specific dephosphorylations were detected on TAF3. Many phosphorylated
residues were evolutionary conserved from human to zebrafish and/or drosophila, and were present in conserved
regions suggesting important regulatory functions.

Conclusions: This study provides the first quantitative proteomic analysis of human TBP containing protein
complexes at the G2/M and G1/S transitions, and identifies new cell cycle-dependent phosphorylations on TAFs
present in their protein complex. We speculate that phosphorylation of complex-specific subunits may be
involved in regulating the activities of TBP protein complexes during the cell cycle.
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Background
Gene transcription is regulated during the cell cycle. Dur-
ing mitosis, transcription by all three nuclear RNA
polymerases (pols) is inhibited [1,2]. In addition, 500-
1000 genes are preferentially expressed at a particular
stage of the cell cycle [3,4]. The regulation of cell cycle-
dependent gene expression can occur at one of several lev-
els. As a result of complex networks of kinases and phos-
phatases, the activities of sequence specific transcription
factors like E2F, B-Myb, and FOXM1 can be modulated [5-
7]. Another level of cell cycle regulation is chromatin,
which can occur both at the level of chromatin remode-
ling, histone modification, and modification-specific
chromatin association (reviewed in [8]). A third level of
regulation of cell cycle-dependent gene expression is the
basal transcription machinery. Transcription initiation by
the three RNA polymerases is regulated by distinct protein
complexes including those containing the common subu-
nit TBP (TATA binding protein) and complex-specific
TAFs (TBP associated factors) (reviewed in [9-12]). These
are in human cells: the SL1 complex (with TAF1A-C and
JOSD3/TAFI41/MGC5306/TAF1D, hereafter referred to as
TAFI41/TAF1D) for pol I transcription; TFIID (with TAF1-
13) and B-TFIID (with BTAF1) for pol II transcription; and
TFIIIB (with Brf1 and the loosely associated Bdp1 protein)
for pol III transcription. Genetic and genome-wide func-
tional analyses point to specific cell cycle functions of the
TFIID TAFs. Studies in yeast have identified temperature
sensitive mutations in several TAF genes which result in
cell cycle arrest at either G1 or G2/M, and include the
TAF1, TAF2, TAF5, and TAF10 genes [13-15]. Mammalian
TFIID TAFs also have cell cycle roles. Murine F9 embryo-
nal carcinoma cells lacking TAF10 arrest at G1 and
undergo apopotosis [16]. A genetic screen for genes
required for cell cycle progression in hamster cells identi-
fied TAF1 as cell cycle regulated gene 1 (CCG1) involved
in G1 progression [17]. Genome-wide RNAi screens have
identified TAF4 and TAF13 to be important for G1 pro-
gression [18]. This study also identified the preinitiation
complex factors TFIIB and TFIIEβ, which are recruited in
response to TFIID promoter binding, to be important for
G1 progression. In addition, the TFIIIB subunit Brf1 has
been functionally linked to the cell cycle as its levels were
found to be important for cell proliferation and onco-
genic transformation, which seems mediated by tRNAmet

levels [19].

Functional studies have mainly focused on the mecha-
nisms underlying mitotic inhibition of transcription.
These led to several models in which phosphorylation on
TAFs regulate their activities. For SL1 mediated transcrip-
tion, phosphorylation on TAF1C at T852 by cdk1/cyclin B
has been implicated in mitotic inhibition [1]. Reactiva-
tion of transcription in G1 involved phosphorylation of
the SL1 interactor UBF at S388 and S484 [20]. TFIID

mediated transcription was marked by a mitotic hyper-
phosphorylation of TAF12, and phosphorylated TFIID
showed decreased in vitro transcription activity [21]. This
study also showed that several interactions within mitotic
TFIID remained present. The TFIIIB subunit Brf1 is also
subject to mitotic phosphorylation, which has been
reported to lead to transcriptional repression and release
of its interactor Bdp1 from chromatin [22,23].

Thus, phosphorylation on TAFs seems to be an important
mechanism for mitotic inhibition of basal transcription
factors. Far less information is available on the role of gen-
eral transcription factors in regulating cell cycle specific
patterns of gene expression. It is possible that changes in
the phosphorylation status of individual TAFs regulate
TBP complex function at cell cycle dependent genes.
Another mechanism may be formation of TFIID subcom-
plexes with distinct functions, such as the Small TAF Com-
plex consisting of TAF8, TAF9, and SPT7L [24,25].
However, it is unknown whether TBP subcomplexes have
specific roles during the cell cycle.

The importance of TBP and TAFs for cell cycle progression
prompted us to address the question whether protein
complex formation around TBP is cell cycle regulated. We
applied a quantitative mass spectrometry approach com-
bined with affinity purification. This allowed us to deter-
mine changes in complex composition and relative
abundances. In addition, novel phosphorylations present
on TAFs in the TBP complexes SL1 and TFIID were identi-
fied and quantified by SILAC. Our results indicate that
both the abundances in cell extracts and subunit phos-
phorylations are cell cycle regulated, while the compos-
tions of TBP complexes remain unaffected. These findings
present the first quantitative proteomic analysis of TBP
complexes during the cell cycle, and offer new prospects
on functional studies of transcriptional regulation during
the cell cycle.

Results and discussion
Quantification of cell cycle-dependent TBP-containing 
protein complexes
To investigate whether TBP-containing protein complexes
are subjected to cell cycle-dependent alterations, we used
a combination of double affinity purification and quanti-
tative mass spectrometry. This procedure is outlined in Fig
1a. Stable HeLaS3 cells expressing flag-HA tagged TBP at
near endogenous levels were used. These cells were gener-
ated by retroviral transduction using pBabe-puro-N-flag-
HA-TBP. After selection with puromycin, individual
clones were picked, expanded and analyzed by immuno-
blot analysis using antibodies against flag, HA, and TBP
(data not shown). This identified several clones with sub-
endogenous expression of tagged TBP, one of which was
used in this and our previous work [26]. The flag-HA
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Quantitation of TBP interactors in mitotic and S phase cellsFigure 1
Quantitation of TBP interactors in mitotic and S phase cells. (A) Experimental setup. TBP complexes were isolated 
from SILAC-labelled cells grown asynchronously or blocked at G2/M or G1/S. QC: ~2% of the immunoprecipitates were ana-
lyzed on NuPage 4-12% Bis-Tris gradient gel followed by silver staining for quality control, as shown in (B). The rest of the 
immunoprecipitates were digested in solution with trypsin. Tryptic fragments were fractionated by SCX and phosphopeptides 
were enriched using titanium dioxide. Peptides were identified and quantified by nano-LC-MS. (C) Quantitation of TBP interac-
tors in G2/M blocked or G1/S blocked cells relative to asynchronous cells. Protein levels are normalized for TBP. Data repre-
sent means of at least three quantified peptides +/- SD. (D) FACS profiles of asynchronous (left panel), nocadozole-treated 
(middle panel), and double thymidine-treated (right panel) cells.
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epitope tags allowed double affinity purification of pro-
tein complexes using antibody-based resins and epitope
peptide elutions. To obtain sufficient quantities, cells were
grown in 15 liter-size bioreactors resulting in yields of 5-
10 × 109 cells. We compared asynchronous (AS) cultures
with G2/M-enriched (blocked using nocodazole) or G1/S-
enriched (blocked using double thymidine) cultures and
used SILAC to allow quantitation by mass spectrometry
[27,28]. SILAC was performed by metabolic labeling of
cells either with 'light' versions of arginine and lysine
(12C6,14N4-arginine and 12C6,14N2-lysine) or with 'heavy'
versions of these amino acids (13C6,15N4-arginine and
13C6,15N2-lysine). FACS analysis of propidium iodide-
stained cells indicated that thymidine-treated cells were
blocked at G1 just before S-phase, and showed an absence
of cells with a DNA content indicative of cells in S-phase
(Fig 1d). Nocadozole-treated cells were blocked at G2/M.
Release experiments followed by FACS analysis confirmed
cell cycle blocks as G2/M-blocked cells proceeded to G1,
while G1/S-blocked cells proceeded to S-phase (data not
shown). Whole cell extracts from the two conditions were
separately purified, and subsequently mixed, concen-
trated, and analyzed by mass spectrometry. Because the
samples were mixed after purification, and not before,
potential exchange between the two samples during the
affinity purification procedure was prevented. This was
particularly important because we recently showed that
BTAF1 is a highly dynamic complex subunit that dissoci-
ates and reassociates with TBP during immunopurifica-
tion [26]. 2% of the immunoprecipitates were analyzed
on silver stained gels for quality control (QC). This analy-
sis revealed the TBP interactors: TAF1, BTAF1, TAF4, TAF5,
TAF6, and tagged TBP itself (Fig 1b). These proteins
seemed to change little at G2/M, while the TFIID-specific
TAFs TAF1, TAF4, TAF5, and TAF6 seemed to be present at
lower amounts relative to the B-TFIID-specific BTAF1 and
tagged TBP at G1/S (Fig 1c). The samples were analyzed by
in-solution tryptic digestion followed by SCX fractiona-
tion, titanium oxide enrichment of phosphopeptides
[29], and nano-LC-MS. This confirmed and extended the
results obtained by analysis of silver stained gels.

On beforehand, the SILAC/titanium dioxide enrichment
approach allows alterations in the detection of missing
stable subunits, changes in relative abundances of TBP
complexes, and cell cycle-dependent phosphorylations.
Each of these events would be reflected by specific changes
in the SILAC ratios after normalization relative to the
abundance of TBP peptides. Missing stable subunits
would be detected by strongly reduced SILAC ratios (rela-
tive to asynchronous). Our results indicate that all subu-
nits of SL1 and TFIID remained complexed with TBP, both
in G2/M- and in G1/S-arrested cells, as all subunits of
these complexes clustered together (Fig 1c; see Additional
File 1 for sequence coverage). No evidence was obtained

for changes of specific TBP-subcomplexes. Changes in rel-
ative complex abundance were detected by changed
SILAC ratios for all subunits of the TFIID complex. Fig 1c
showed increased SILAC ratios for all TFIID subunits in
G2/M (relative to non-synchronized), while SILAC ratios
for these TAFs were reduced in G1/S cells. This suggested
that the abundance of TFIID in these extracts was subject
to cell cycle regulation. The abundance of B-TFIID was
decreased in extracts derived from G2/M cells, but not in
G1/S derived extracts. The abundance of SL1 was
increased at G2/M, but not at G1/S, while the TFIIIB sub-
unit BRF1 showed unchanged associations at G2/M and
G1/S. We would like to point out that we have used a mild
salt extraction protocol [30]) in order to maintain TBP
complex integrity. Importantly, re-extraction of remaining
chromatin pellets with higher salt solubilised a significant
proportion of TBP complexes (data not shown). The total
amount of cellular TAFs and TBP is not modulated during
the cell cycle. This suggests that chromatin association of
TBP complexes may be subject to cell cycle regulation.
Therefore, we conclude that data on the abundances of
TBP complexes in cellular extracts during the cell cycle
should be interpreted with caution. Our SILAC approach
indicates that TBP complexes remain intact at the G2/M
and G1/S transitions, and that B-TFIID, SL1, TFIID but not
TFIIIB display changes in abundance in cellular extracts
derived from these transitions.

These results support previous observations by Segil et al.
[21], who affinity purified TFIID from G2/M-enriched
cells and found by co-immunoprecipitation that TBP,
TAF1, TAF4, TAF5, TAF7, TAF9, TAF10, TAF12 remained
present in mitotic TFIID. Also, mitotic SL1 and the stable
components of TFIIIB (TBP and BRF1) have been reported
to remain intact [1,20,22,23]. We extend these analyses
with a quantitative analysis of G2/M-specific TBP interac-
tions of the recently identified SL1 subunit TAFI41/TAF1D
[10], and of the TFIID subunits not analyzed so far,
including TAF2, TAF3, TAF6, TAF8, TAF11.

Cell cycle-induced phosphorylations on TAFs
A number of novel phosphorylations on TAFs in the con-
text of their protein complexes were detected and quanti-
fied (Fig 2, Table 1, and Additional Files 2 and 3). This
revealed highly G2/M-specific phosphorylations of the
TFIID subunits TAF1 (T876) and TAF7 (S159), and of the
SL1 subunit TAF1D (S234) (Table 1, Fig 2a,d,c). The T876
phosphorylation of TAF1 was interesting because of its
proximity to G716, which is mutated to aspartic acid in
ts13 hamster cells resulting in a thermolabile form of
TAF1 and to arrest of ts13 cells in G1 at 39.5°C [17]. We
made use of these cells to test involvement of T876 in G1
progression. Both the phosphopreventing T876A and the
phosphomimicking T876D mutation were similarly
active as wild type TAF1 in this assay, suggesting that this
Page 4 of 11
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residue is not essential for cell cycle progression (data not
shown). We created ts13 cell lines that stably express the
phosphomutants of TAF1 at similar levels compared to
endogenous hamster TAF1. These cells displayed
unchanged expression levels of a selected set of genes
including the cell cycle-independent genes for cyclophilin
B and glucose phosphate dehydrogenase, and the G2/M-
specific genes for stk6 and cyclin B2 (data not shown).
This suggested that phosphorylation of T876 is not critical
for the cell cycle function of TAF1 or that it is redundant
with other modifications. Slightly elevated (2.2-fold)
phosphorylation of S543 TAF4 was detected in G2/M cells
(Table 1). At G1/S, TAF3 was strongly dephosphorylated
at S427, and to a lesser extend at S364 (Table 1, Fig 2e).
Using a 2-fold cut off, other phosphorylations detected
were cell cycle-independent. These included those on
TAF3 (S183; Fig 2b), TAF6 (S532 and S653), and TAF1D
(S40 and S137) (Table 1). All of these phosphorylations

are novel, except S183 of TAF3, which appeared also cell
cycle-independent in another study [31], and S653 of
TAF6, which was not tested previously for cell cycle regu-
lation [32].

A recent study using total proteome analysis also identi-
fied cell cycle-dependent phosphorylations of several TBP
interactors including G1-specific phosphorylations on
TAF7, and mitosis-specific phosphorylations on TAF7,
TAF8, TAF9, and TAF1 [31]. Our analysis of TAFs in the
context of their protein complexes can be distinguished
from mapping of phosphosites in total cell lysates, which
do not distinguish whether a certain TAF is present in
complex with TBP or in another complex or as free pro-
tein. This is particularly relevant for TAF8 and TAF9, as
they have been shown to be part of the Smal TAF and/or
SAGA complexes [24,25]. We note that it is inherently dif-
ficult to determine the stoichiometry of a particular phos-

Table 1: Quantification of phosphorylations on TBP interactors in cell cycle-blocked cells.

Protein Peptide Position Phospopeptide 
ratio (G2/M:AS)

Protein ratio 
(G2/M:AS)

Phosphopeptide/
Protein ratio 
(G2/M:AS)

Reference

TAF1 TpGMDSNWWVLK T876 150.91 1.40 107.99 this study

TAF3 RPLDSpPEAEELPAMK S183 1.38 1.60 0.86 this study; ref [31]

TAF4 SpPGVQPQLVLGGAA-
QTASLGTATAVQTGTPQR

S543 3.13 1.42 2.20 this study

TAF7 YIESpPDVEKEVK S159 15.77 1.36 11.58 this study

TAFI41/TAF1D LAGDSpFIVSSEFPVR S234 > 200 2.88 > 200 this study

Protein Peptide Position Phospopeptide 
ratio (G1/S:AS)

Protein ratio 
(G1/S:AS)

Phosphopeptide/
Protein ratio 
(G1/S:AS)

Reference

TAF3 RPLDSpPEAEELPAMK S183 0.11 0.12 0.94 this study; ref [31]

TAF3 QIQTpPPDAGK T364 0.05 0.12 0.39 this study

TAF3 RISpGPECTTPK S427 0.02 0.12 0.19 this study

TAF6 AAAPPQPSpPPPTK S532 0.07 0.11 0.62 this study

TAF6 QEAGDSpPPPAPGTPK S653 0.12 0.11 1.13 this study; ref [32]

TAF7 YIESpPDVEKEVK S159 0.11 0.17 0.63 this study

TAFI41/TAF1D SRGSGFPFLESpENEK S137 1.43 1.35 1.06 this study

TAFI41/TAF1D TQCIPYSpPKGEK S40 1.94 1.35 1.44 this study

Phosphorylations (indicated with a 'p' behind the modified residue) detected on TBP interactors were quantified in cell cycle-blocked cells relative 
to asynchronous cells and were corrected for protein levels. The sequence of the tryptic peptide detected is indicated.
Page 5 of 11
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Cell cycle-dependent phosphorylations on TAFsFigure 2
Cell cycle-dependent phosphorylations on TAFs. Quantitative mass spectra of highly cell cycle-regulated phosphoryla-
tions on TAFs. Peak pairs representing isotopic labeled phosphopeptides derived from asynchronous and cell cycle blocked 
cells are indicated. Peaks labeled * are derived from isotopic labeled arginine-to-proline conversion, and should be added to the 
'heavy' peaks for quantification. Shown are G2/M-induced phosphorylations on TAF1 (A), TAF1D (C), and TAF7 (D); G1/S-
induced dephosphorylation on TAF3 (E). (B) Cell cycle-independent phosphorylation on TAF3. All phosphorylations were 
quantified after correction for protein levels (see Table 1).
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phorylation by mass spectrometry. This relates to
potential differences in ionization properties of the
phoshopeptide and its unmodified counterpart. For simi-
lar reasons it is not possible to exclude modification of a
particular peptide.

Interestingly, the phosphorylation at S427 on TAF3,
which is downregulated at G1/S, is located in a region in
which many other phosphosites have been mapped [33-
35]. Out of all phosphosites detected in TAF3, all 17
(included the ones detected here) are located between
S183 and T501 in the linker between the histone fold and
PHD finger (Fig 3). Possibly the linker is involved in com-
munication between the N-terminal histone fold,
required for assembly into TFIID, and the C-terminal
PHD finger, involved in recognition of histone H3 lysine
4 trimethyl-modified nucleosomes [36]. It is presently
unknown whether any of these phosphorylations are also
downregulated at G1/S, and whether this region is a true
hotspot for phosphorylation or whether phosphoryla-
tions are just more easily detectable compared to other
TAF3 regions.

The G2/M-specific phosphorylation at S159 of TAF7 is
located in a TAF7-specific domain that spans residues 12-
178 (Fig 3). Part of this domain overlaps with its TAF1-
interaction domain, spanning residues 139-245. It is how-
ever unlikely that mitotic phosphorylation at S159 specif-
ically affects the TAF7-TAF1 interaction, as both proteins
have similar SILAC ratios in TBP purifications from G2/M
cells (Fig 1c). TAF7 S159 lies just outside the domain that
has been mapped to interact with transcriptional activa-
tors (spanning residues 38-118). This would be a way to
inhibit the activity of TFIID at mitosis and silence tran-
scription. Whether this possibility is true should be deter-
mined in future experiments.

Bioinformatic analysis of phosphosites
Fig 3 shows the locations of the detected phosphoryla-
tions with respect to known protein domains. Most phos-
phorylations were present in linker regions between
domains. To determine whether the phosphorylations
were evolutionary conserved, an alignment of full length
proteins from human, mouse, zebrafish, fruit flies, worm,
and yeast was performed using clustal W [37] (Fig 4). TAFs
present in TFIID were conserved in these organisms. How-
ever, the SL1-specific TAFI41/TAF1D was only conserved
between human and mouse but not between human and
lower eukaryotes. The alignments revealed that several
residues found to be phosphorylated in human cells were
conserved in mouse, zebrafish, and flies (TAF1 T876;
TAF3 S183; TAF6 S653). Other residues were (semi) con-
served (with either serine or threonine) from human to
mouse and zebrafish (TAF3 S427; TAF6 S532, TAF7
S159), or from human to mouse and flies (TAF3 T364).
Residues only conserved from human to mouse included

TAF4 S543, and TAF1D S40, S137, and S234. None of the
phosphorylated residues were conserved in worm or
yeast, however, in some cases the aligned residue was neg-
atively charged mimicking phosphorylation. This was
observed for residues aligned with TAF1 T876 in yeast
(D533) and with TAF3 S427 in flies (D346). Interestingly,
some phosphorylations were present in regions that were
highly conserved from human to yeast (TAF1 T876; TAF6
S532; TAF7 S159) or from human to flies or worm (TAF3
S18 and S427; TAF6 S653), suggesting that they may be
involved in regulating important functions of these pro-
teins.

Conclusions
Recent advances in proteome technology allow a quanti-
tative analysis of protein complexes and their post-trans-
lational modification status under various cellular
conditions. Previous work suggested that TBP complexes
play important roles in cell cycle progression, and that
some of the TAFs remain associated with TBP and are sub-
ject to phosphorylation. Using SILAC and titanium diox-
ide enrichment of phosphopeptides, we here extend these
analysis for all TAFs at the G2/M and G1/S transitions,
and found that: 1)TBP complexes remain intact, 2) the
abundances of TBP complexes in cellular cell extracts are
cell cycle-dependent, and 3) numerous novel phosphor-
ylation sites could be quantified. This indicated that sub-
units of TFIID and SL1 are subject to cell cycle-dependent
phosphorylations. We speculate that phosphorylation of
TAFs is involved in regulating the cell cycle dependent
activity of TBP complexes.

Methods
Cell culture
Creation and culture of the HeLa S3 cell line stably
expressing N-flag-HA-hTBP at near-endogenous levels has
been described previously [26]. For SILAC analysis, cells
were labelled using the heavy amino acids 13C6,15N4-
arginine and 13C6,15N2-lysine or the light amino acids
12C6,14N4-arginine and 12C6,14N2-lysine as described [26].
Metabolic labeling was performed using heavy amino
acids for G2/M cells compared to light amino acids for AS
cells, and light amino acids for G1/S cells compared to
heavy amino acids for AS cells. Scale-up of cell culture was
performed using a 15 l bioreactor (Applikon, NL). Cells
were blocked in G2/M using 60 ng/ml nocodazole for 17
hr. For cell cycle block at the G1/S transition, a double
thymidine block was performed using 2.5 mM thymidine
and a sequence of 18 hr for the first block, 8 hr release,
and 18 hr for the second block. Cell cycle blocks were ver-
ified by FACS analysis of propidium iodide-stained cells.

Preparation of protein extracts
Protein extracts were prepared based on Dignam et al.
[30]. All handling was performed at 4°C. Cells were
washed two times in PBS, and were allowed to swell in
Page 7 of 11
(page number not for citation purposes)
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three packed cell volumes (PCVs) of buffer A (10 mM Tris-
HCl pH 7.9, 20% glycerol, 1.5 mM MgCl2, 0.1 mM EDTA,
10 mM KCl, 1 mM DTT, 1% protease inhibitor cocktail
(Sigma P8340), 1% phosphatase inhibitor cocktail 1
(Sigma P2850), 1% phosphatase inhibitor cocktail 2
(Sigma P5726). After centrifugation at 1500 rpm for 10
min, the cell pellet was resuspended in 3 PCV of buffer A.
Cells were lysed by douncing using a tight pestle, and then
centrifuged at 3000 rpm for 15 min. The supernatant was
brought to 100 mM NaCl and represents the cytoplasmic
extract (CE). The pellet was resuspended in 5 ml per 109

cells of buffer B (20 mM HEPES-NaOH pH 7.9, 25% glyc-
erol, 1.5 mM MgCl2, 0.2 mM EDTA, 0.42 M NaCl, 1 mM
DTT, protease and phosphatase inhibitors as above), and
incubated for 30 min with rotation. This mixture was cen-
trifuged at 15,000 rpm for 20 min. The supernatant repre-
sents the nuclear extract (NE).

Affinity purification of TBP complexes
Extracts were dialyzed overnight in buffer C (20 mM
HEPES-NaOH pH 7.9, 20% glycerol, 0.2 mM EDTA, 100
mM NaCl, 1 mM DTT, protease and phosphatase inhibi-
tors as above). Extracts were centrifuged at 100,000 × g for

45 min to remove precipitated material. Extracts repre-
senting whole cell extract (CE + NE) were double affinity
purified as described [26]. Extracts from asynchronous
cells and cell cycle blocked cells were compared by SILAC
and quantitative mass spectrometry. TBP complexes were
purified separately to prevent exchange of subunits during
the purification procedure as described [26]. Purified
complexes were mixed at a 1:1 ratio based on the total
protein content of the input material and denatured
immediately by methanol/chloroform precipitation. Pre-
cipitated proteins were stored at -80°C until analysis by
mass spectrometry.

In-solution digestion of purified protein complexes
Purified protein complexes were dissolved in a solution of
8 M urea in 50 mM ammonium bicarbonate pH 8, and
incubated with 5 μg of endoproteinase LysC (Roche Diag-
nostics) for 4 hr at 37°C. Following reduction and alkyla-
tion using 2 mM DTT and 4 mM iodoacetamide,
respectively, the sample was diluted to 2 M urea with 50
mM ammonium bicarbonate pH 8, and incubated over-
night with 5 μg trypsin at 37°C.

SCX Chromatography and online TiO2 based two-
dimensional chromatography
After digestion, the protein digests were desalted using a
small plug of C18 material (3 M Empore C18 extraction
disk) packed into a GELoader Tip similar to as previously
described [38] onto which 10 μL of Aqua C18 (5 μm, 200
Å) material was placed. The eluate was dried completely.
The G2/M sample was reconstituted in 20% (v/v) ace-
tonitrile, 0.05% (v/v) formic acid and analyzed using
strong cation exchange chromatography and subsequent
fractions were analyzed on a TiO2 based 2D-nanoflow-
HPLC as described [29]. The G1/S sample was reconsti-
tuted in 5% formic acid, and immediately analyzed on the
TiO2 based 2D-nanoflow-HPLC system, without prior
SCX fractionation as described by Pinkse et al. [29]

Mass Spectrometry
The 2D-LC system was online coupled to a LTQ Orbitrap
mass spectrometer (Thermo Electron, Bremen, Germany),
which operated in data-dependent mode, automatically
switching between MS, MS/MS, and neutral loss-driven
MS3 acquisition. Full-scan MS spectra (from m/z 300 to
1500) were acquired in the Orbitrap with a resolution of
60,000 at m/z 400 after accumulation to a target value of
500,000. The three most intense ions at a threshold above
5000 were selected for collision-induced fragmentation in
the linear ion trap at a normalized collision energy of 35%
after accumulation to a target value of 10,000. The data-
dependent neutral loss settings were chosen to trigger an
MS3 event after a neutral loss of 49 ± 0.5 m/z units was
detected in the most intense fragment ion.

Location of phosphorylations on TAFs with respect to pro-tein domain organizationFigure 3
Location of phosphorylations on TAFs with respect 
to protein domain organization. Phosphosites are indi-
cated with P using the following colour code: black, 
unchanged; red, cell cycle regulated (relative to asynchro-
nous), using a 2-fold cut-off.
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Evolutionary conservation of phosphositesFigure 4
Evolutionary conservation of phosphosites. Aligments of sequences +/- 10 aa around the phosphosites between human 
(Hs), mouse (Mm), zebrafish (Dr), Drosophila (Dm), worm (Ce), and yeast (Sc), according to clustal W. Colouring was similar 
to clustal W: gray: small +hydrophobic AVFPMILW; red: acidic DE; blue: basic RK; green: neutral STYHCNGQ. * indicates the 
phosphorylated residue. UniProtKB/Swiss-Prot accession numbers [40] used are: Hs_TAF1: P21675; Mm_TAF1: Q80UV9; 
Dr_TAF1: Q1LYC2; Dm_TAF1: P51123; Ce_TAF1: Q9XUL9; Sc_TAF1: P46677; Hs_TAF3: Q5VWG9; Mm_TAF3: Q5HZG4; 
Dr_TAF3: Q5RH27; Dm_TAF3: Q9XZU7; Ce_TAF3: Q17907; Hs_TAF4: O00268; Mm_TAF4: A2AC70; Dm_TAF4: P47825; 
Hs_TAF6: P49848; Mm_TAF6: Q62311; Dr_TAF6: Q66HZ5; Dm_TAF6: P49847; Sc_TAF6: P53040; Hs_TAF7: Q15545; 
Mm_TAF7: Q9R1Co; Dr_TAF7: Q8JHG4; Hs_TAF1D: Q9H5J8; Mm_TAF1D: Q9D4V4.

*

*

Hs_TAF6 LCGGKQEAGDSPPPAPGTPKA 663

Mm_TAF6 LCGGKQEAGDSPPPAPGTPKA 663

Dr_TAF6 --AVKLECSESPATSTQLPH- 636

Dm_TAF6 --AVDGITVQSFRAS------ 606

Ce_TAF6 --------------------- 470

Sc_TAF6 --------------------- 516

*

Hs_TAF4 TVQPSATLQRSPGVQPQLVLG 553

Mm_TAF4 TVQPTTTLQRSPGVQPQLVLG 148

Dm_TAF4 VLGLAGLSQQLPKIQAQIRPI 404

Dr_TAF4 --------------------- 1

Ce_TAF4 --------------------- 86

Sc_TAF4 --------------------- 62

*

Hs_TAF7 RKTAKKKYIESPDVEKEVKRL 169

Mm_TAF7 RKTAKKKYIESPDVEKEVKRL 169

Dr_TAF7 RKTAKKKYIESPDVEKEVKRL 178

Dm_TAF7 RKTLKKKNVEAPEIEKEVKHL 205

Ce_TAF7 RKKKEKKTMAVEEIEIELKRL 200

Sc_TAF7 RRKMDPN--EIDYVEKVVDML 296

*
Hs_TAF1D NECDIKLAGDS-FIVSSEFPV 243

Mm_TAF1D AECDIKLVEDSCFIISSEFSR 242

*
Hs_TAF1D SRGSGFPFLESEN-EKNAPWR 147

Mm_TAF1D DKGAVFPFLESESGRKPLPWK 147

*
Hs_TAF1D SLFKTQCIPYSPKGEKRNPIR 50

Mm_TAF1D SLFKTQCAP-SPIQKQRHPTV 49

*
Hs_TAF1  RLKLCADFKRTGMDSNWWVLK 886

Mm_TAF1 RLKLCADFKRTGMDSNWWVLK 917

Dr_TAF1 RLKLCADFKRTGMDSNWWVLK 910

Dm_TAF1 RLKQCADFKRTGMDSNWWVIK 787

Ce_TAF1 RLKMCSTFVRQGSET-YWSLK 739

Sc_TAF1 KVKEFMKYQRDGPEKGLWRLK 543

*
Hs_TAF3 ETIQVKQ-IQTPPDAGKLNSE 374

Mm_TAF3 ETIPVMKPTQTPPEVVKLNIE 375

Dm_TAF3 QVLLAEKKSGSEPERSKLDIF 483

Dr_TAF3 --------------------- 336

Ce_TAF3 --------------------- 469

Sc_TAF3 --------------------- 206

*

Hs_TAF6 SARAAAPPQPSPPPTKFIVMS 542

Mm_TAF6 SARAAAPPQPSPPPTKFIVMS 542

Dr_TAF6 STRPGTPTQPSPPATKYIVMA 530

Dm_TAF6 SLPQIRAIQANQPAQKFVIVT 530

Sc_TAF6 DEDKEKLLERCGVTIGFHILK 501

Ce_TAF6 -----------SIRNRYNLQQ 458

Hs_TAF3 DIFTSPK-RISGPECTTPKAS 437

Mm_TAF3 DTFTSPK-RISGSECATPKAS 438

Dr_TAF3 PHPPKPVPKHTLSHIKPPQAL 401

Ce_TAF3 PFKDDSGPAFRLSELVKP--- 575

Dm_TAF3 SMKINPCNIFDGTIPLTKAGV 356

Sc_TAF3 --------------------- 206

*

Hs_TAF3 --------LDSPEAE-ELPAM 192

Mm_TAF3 --------LDSPEAE-EMPSM 192

Dr_TAF3 --------GQSPRPEGLLPAA 198

Dm_TAF3 SVVMTTGGFISPAIEGKLPED 223

Ce_TAF3  --------VQQAREEKERREA 210

Sc_TAF3 --------------------- 145
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Protein Identification
In a post analysis process, all MS2 and MS3 spectra were
converted to single DTA files using Bioworks software,
Version 3.1. An in-house Perl-script was used to assign the
original and accurate parent mass to all MS3 spectra, ena-
bling accurate parent mass identification. For protein
identification, MS/MS data were submitted to the Interna-
tional Protein Index (IPI) human (release 3.36; 69012
entries) using Mascot Version 2.2 (Matrix Science) with
the following settings: 20 ppm and 0.8 Da deviation for
precursor and fragment masses, respectively. Trypsin was
specified as the proteolytic enzyme, and up to two missed
cleavages were allowed. Carbamidomethyl cysteine was
set as fixed modification; N-terminal acetylation, oxidized
methionines, 13C6-15N2 lysine, 13C6-15N4 arginine and
phosphorylation of serine and threonine residues were set
as variable modifications. The following was done to ver-
ify identified phosphosites: 1) Mascot scores of potential
phosphosites at alternative residues in the identified pep-
tides were determined and were found to be lower com-
pared to the phosphosites presented in all cases, 2) All
MS/MS spectra were manually verified.

Protein quantification
Relative quantification ratios of identified proteins were
derived by MSQuant, which is open source software [39].
Briefly, peptide ratios between the monoisotopic peaks of
"normal" and "heavy" forms of the peptide were calcu-
lated and averaged over consecutive MS cycles for the
duration of their respective LC-MS peaks in the total ion
chromatogram using FT-survey. Peptide ratios of the same
protein were averaged to give protein abundance ratios as
well as the respective standard deviation. Peptide ratios
obtained by using the MSQuant software were all
inspected manually. Our experiments, in agreement with
data from other groups, showed that HeLa cells convert
13C6-15N4-arginine to 13C5-15N1 -proline. In these experi-
ments the conversion was estimated as 13.5%. We cor-
rected the peptide ratio for this conversion as described
previously [26]. After the proline conversion correction,
protein ratios were normalized on the TBP level.

Bioinformatic analysis
Sequence aligments were made using clustal W software
[37] using full cDNA sequences of TAFs and their
homologs. The stretch containing the phosphorylated res-
idue +/- 10 amino acids was manually edited. Omission
of an alignment indicates that no homologous region or
protein was identified.
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