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Abstract

Background: The formation of the molluscan shell is regulated to a large extent by a matrix of extracellular
macromolecules that are secreted by the shell forming tissue, the mantle. This so called “calcifying matrix” is a
complex mixture of proteins and glycoproteins that is assembled and occluded within the mineral phase during
the calcification process. While the importance of the calcifying matrix to shell formation has long been
appreciated, most of its protein components remain uncharacterised.

Results: Recent expressed sequence tag (EST) investigations of the mantle tissue from the tropical abalone (Haliotis
asinina) provide an opportunity to further characterise the proteins in the shell by a proteomic approach. In this
study, we have identified a total of 14 proteins from distinct calcified layers of the shell. Only two of these proteins
have been previously characterised from abalone shells. Among the novel proteins are several glutamine- and
methionine-rich motifs and hydrophobic glycine-, alanine- and acidic aspartate-rich domains. In addition, two of
the new proteins contained Kunitz-like and WAP (whey acidic protein) protease inhibitor domains.

Conclusion: This is one of the first comprehensive proteomic study of a molluscan shell, and should provide a
platform for further characterization of matrix protein functions and interactions.

Background

The calcified molluscan shell is an excellent model with
which to study the process of biomineral formation. The
wide morphological diversity of shell-bearing molluscs
(bivalves, gastropods, cephalopods, monoplacophorans
and scaphopods) also extends to a tremendous diversity
of shell micro-textures. Despite this diversity, molluscan
shells are produced by an evolutionarily homologous
structure known as the mantle. The polymorph of
CaCOj; (primarily aragonite or calcite), along with all
other nano-scale features of the biomineral, are thought
to be determined and regulated by an extracellular ‘cell-
free’ matrix that is secreted by the mantle. This matrix
is incorporated into and surrounds nascent CaCOj crys-
tals during shell growth. Even though it constitutes only
a small part of the total shell weight (1-5%), this matrix
is clearly essential for initiating biomineral formation

* Correspondence: benjamin.marie@u-bourgognefr; fredericmarin@u-
bourgogne fr

TUMR 5561 CNRS, Biogéosciences, Université de Bourgogne, 21000 Dijon,
France

Full list of author information is available at the end of the article

( ) BiolVled Central

and imparting critical physical properties to the shell
such as fracture resistance. The biochemical characteris-
tics of the matrix, usually purified and studied following
decalcification of the shell, indicate that it is comprised
of a heterogenous set of macromolecules including
chitin, hydrophobic ‘framework’ proteins and soluble
proteins and glycoproteins [1]. However, relatively few
matrix proteins have been identified and characterised
from abalone shells, perhaps the best-studied gastropod
biomineralisation system. To date these include Lustrin-
A [2], Perlucin [3], Perlustrin [4], AP7, AP24 [5], Perl-
wapin [6] and Perlinhibin [7].

Jackson et al. [8-10] employed a high-throughput EST
sequencing strategies in order to identify gene products
that may be directly involved in shell formation of the
tropical abalone Haliotis asinina. Hundreds of concep-
tually translated proteins putatively related to shell calci-
fication were identified using this approach, however
none of these have been directly characterized from the
shell. Furthermore, this approach cannot accurately dis-
criminate between proteins required for non-mineralising
functions, and those directly involved in shell formation.
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When coupled with a proteomic approach such as we
have employed here, these EST libraries constitute a
valuable resource for the accurate identification and
annotation of potentially full length, true shell forming
proteins. Here we have been able to unambiguously
annotate 14 proteins from the nacreous (inner/ventral
most) and prismatic (outer/dorsal most) shell layers of H.
asinina. One of these proteins, Has-Perlwapin, is homo-
logous to a protein previously described from the nacre
of Haliotis laevigata [6]. We also identified Has-Some-
tsuke which is thought to be involved in pigmenting the
outer periostracum of H. asinina [8,9] but apparently
plays other shell forming roles, while HasCL10contig2
was identified from a mantle EST study but was not char-
acterised in anyway [10]. All 11 other shell proteins are
novel and most do not exhibit any homology with pro-
teins from public databases.

Given the high proportion of novel genes being reported
from non-model EST datasets and the growing flood
of sequence data from next generation technologies,
these results emphasize the importance of proteomic
approaches for the validation of coding sequences. This is
especially relevant for the field of molluscan biominerali-
zation where most of the characterised biomineral-
associated proteins have no known homologs in any
model species [11].

Methods

Shell matrix extraction

Fresh Haliotis asinina shells (10-12 cm in length) were
collected from the Bribie Island Aquaculture Research
Facility (Queensland, Australia). Superficial organic con-
taminants as well as the periostracum were removed by
incubating intact shells in NaOCI (1%, v/v) for 24 h.
Shells were then thoroughly rinsed with water and then
roughly crushed into approximately 1-mm?® fragments,
and subsequently into fine powder (>200 pm). For some
shells, the external prismatic layer was removed by abra-
sion under cold water to avoid shell heating, allowing
the proteinaceous components of the nacreous layer
alone to be extracted. All protein extractions were per-
formed at 4°C as previously described [12]. Briefly, pow-
dered samples (nacre only or nacre + prisms) were
decalcified overnight in cold dilute acetic acid (5%, v/v),
which was slowly added by an automated titrator (Titro-
nic Universal, Schott, Mainz, Germany) at a flow rate of
100 pL every 5 s. The solution (final pH around 4.2)
was centrifuged at 3,900 g (30 min). The resulting pellet,
corresponding to the acid-insoluble matrix (AIM), was
rinsed 6 times with MilliQ water, freeze-dried and
weighed. The supernatant containing acetic acid-soluble
matrix (ASM) was filtered (5 um) and concentrated with
an Amicon ultra-filtration system on Millipore® mem-
brane (YM10; 10 kDa cut-off). The solution (about 5-10
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mL) was extensively dialyzed against 1 L of MilliQ water
(over at least three days with 6 water changes) before
being freeze-dried and weighed.

Sample preparation for proteomic analysis

Following SDS-PAGE under denaturing conditions (4-
15% acrylamide gel) and staining with Coomassie Brilli-
ant Blue (CBB), bands selected for further investigation
were excised and completely destained by 3 washes in
200 pL of a 50/50 mixture of 100 mM NH,HCO; pH
8.1 and 100% acetonitrile (ACN) for 30 min at 37°C.
Reduction was performed with 100 pL of 20 mM dithio-
threitol (DTT) in 50 mM NH,HCO; pH 8.1 (30 min at
37°C) after which the supernatant was removed. Alkyla-
tion was performed with 200 puL of 50 mM iodoaceta-
mide in 50 mM NH,HCO; pH 8.1 for 30 min at room
temperature in the dark. The supernatant was then
removed and gel slices were rinsed with 300 pL of 25
mM NHHCO; pH 8.1, then with 300 uL of 100% ACN
and dried under vacuum. Gel slices were treated with 1
pg of trypsin (T6567, proteomics grade, Bio-Rad) in 100
pL of 20 mM NH,HCO; pH 8.1 with 10% ACN for 8 h
at 37°C. The supernatant was then collected and freeze
dried. Samples were re-suspended in 20 pL of 0.1%
TFA, and 5 uL was injected into the nanoLC-ESI-MS/
MS system for analysis. This in gel digestion procedure
was performed for 12 and 8 protein bands derived from
nacre + prisms AIM and ASM extracts, respectively.

In solution digestions of ASM and AIM from nacre
only and nacre + prism samples were also performed. In
each case, one mg of organic matrix material was
reduced with 100 pL of 10 mM DTT (Sigma-Aldrich,
France) in 100 mM NH,HCO; pH 8.1 for 30 min at 57°
C. Fifteen uL of iodoacetamine (50 mM, final concentra-
tion) was added and alkylation was performed for 30
min at room temperature in the dark. Samples were
then freeze dried and re-suspended in 200 pL of a solu-
tion containing 5 pg of trypsin (T6567, proteomics
grade, Bio-Rad) in 50 mM NH,HCO; pH 8.1 with 5%
ACN, and then incubated overnight at 37°C. Samples
were centrifuged (30 min, 14,000 g) and the superna-
tants transferred to new tubes before being freeze dried
and re-suspended in 100 puL of 0.1% TFA. Five pL of
each sample was injected into the nanoLC-ESI-MS/MS
system analysis.

Peptide fractionation and data acquisition

High performance liquid chromatography (HPLC) of the
tryptic peptides was performed on a C;g column (Inter-
chim, 1 mm x 150 mm, 5 pm, 300°A) at a flow rate of
50 uL.min" with a linear gradient (5 to 80% in 90 min)
of acetonitrile and 0.1% formic acid. The fractionated
peptides were analyzed with an electrospray ionization
quadripole time-of-flight (ESI-QqTOF) hybrid mass
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spectrometer (pulsar i, Applied Biosystems) using infor-
mation dependent acquisition (IDA), which allows
switching between MS and MS/MS experiments. The
data were acquired and analyzed with the Analyst QS
software (Versionl.1). After 1 s acquisition of the MS
spectrum, the two most intense multiple charged pre-
cursor ions (+2 to +4) could be selected for 2 s-MS/MS
spectral acquisitions. The mass-to-charge ratios of the
precursor ions selected were excluded for 60 s to avoid
re-analysis. The minimum threshold intensity of the ion
was set to 10 counts. The ion-spray potential and
declustering potential were 5200 V and 50 V, respec-
tively. The collision energy for the gas phase fragmenta-
tion of the precursor ions were determined
automatically by the IDA based on their mass-to-charge
ratio (m/z) values.

Data analysis
The MS/MS data were used for database searches using
an in house version of the MASCOT search engine
(Matrix Science, London, UK; version 2.1). 8,335 EST
and 832 nucleotide sequences derived from H. asinina
EST libraries were downloaded (January 2010) from the
NCBI server (http://www.ncbi.nlm.nih.gov) and MAS-
COT searches were directly performed against nucleo-
tide sequences. LC-MS/MS data generated by each shell
sample and protein band were searched separately,
using carbamido-methylation as a fixed modification
and methionine oxidation as variable modification. The
peptide MS tolerance was set to 0.5 Da and the MS/MS
tolerance was set to 0.5 Da. The threshold score for
peptide identification was set between 28 and 31 for
each search. In silico translated nucleotide sequences
with at least two independent peptide matches were
considered to be valid. All peptide hits were manually
confirmed by the interpretation of the raw LC-MS/MS
spectra with analyst QS software (Version 1.1). Quality
criteria were the peptide MS value, the assignment of
major peaks to uninterrupted y- and b-ion series of at
least 3-4 consecutive amino acids and the match with
the de novo interpretations proposed by the software.
Protein identification was attempted using BLAST
searches against the UniProtKB/Swiss-Prot protein
sequence database (http://www.uniprot.org) and the
GenBank non-redundant (nr) database (http://www.ncbi.
nlm.nih.gov/blast.cgi). To detect sequences sharing simi-
larity with H. asinina shell proteins from other mollus-
can EST projects (which are not deposited in GenBank
nr), tBLASTn searches was also performed against Gen-
Bank dbEST and were restricted to molluscan taxa
(taxid:6447). Signal peptides were predicted using Sig-
nalP 3.0 (http://www.cbs.dtu.dk/services/SignalP) and
conserved domains were predicted using SMART
(http://smart.embl-heidelberg.de). Following peptide

Page 3 of 11

signal removal theoretical masses and pls were deter-
mined using the EXPASY PROTPARAM tool (http://
www.expasy.org/tools/protparam.html). Alignments were
performed with Clustal-W or hierarchical-clustering
algorithms using UniProt (http://www.uniprot.org) or
the MULTALIN (http://bioinfo.genotoul.fr/multalin/
multalin.html) online tools.

Results and Discussion

Like other haliotid gastropods, H. asinina exhibits a
multi-layered shell (Figure 1). The thin external perios-
tracum is primarily composed of organic components
and is not calcified (Figure 1A-B). The underlying layers
are highly calcified and consist of a fine outer prismatic
layer and a thick inner nacreous layer. Prisms are
micro-needles enveloped by an organic sheath (Figure
1B-D). Nacre consists of the columnar superimposition
of 0.5 um thick aragonitic tablets, embedded within a
peripheral thin organic matrix (Figure 1D-F). By care-
fully removing the periostracum with sodium hypochlor-
ite, we were able to subsequently extract the matrix
associated with both prismatic and nacreous calcified
layers, or with the nacreous layer alone (Figure 1A). Of
the nacre + prism material the AIM represents around
1.5% by weight, and the ASM 0.05-0.1%.

When analysed by one-dimensional electrophoresis
under denaturing conditions, the nacre + prism ASM
and AIM displayed few discrete prominent bands (Fig-
ure 2). When present, patterns of ASM and AIM stain-
ing appear to share similar bands, such as the thick
band at 32 kDa and the thin discrete bands migrating at
between 15 and 10 kDa. Twelve and eight gel bands
were collected from nacre + prism AIM and ASM
extractions respectively, and were processed as described
above for LC-MS/MS analysis. Un-fractionated ASM
and AIM material derived from the nacreous layer alone
and the nacre + prism samples were similarly analyzed
by LC-MS/MS. These analyses were performed three
times for the un-fractionated matrices, and once or
twice for the SDS-PAGE bands. For all samples, the
peak list generated from the MS/MS spectra was directly
interrogated against the H. asinina EST database using
MASCOT software. In this way we were able to identify
14 proteins from the EST data (Table 1 and additional
file 1, Table S1). The putative identifications of three
other proteins, based on only one unique peptide, are
indicated in additional file 2, Table S2, but are not dis-
cussed further here. No additional peptides were identi-
fied by including phosphorylation as a variable
modification during the MASCOT searches, indicating
that specific enrichment and LC-MS procedures are
needed to analyze these post-translational modifications.
Nevertheless, 3 of the identified proteins - ML5A7,
ML1E6 and ML5H8 - were mostly detected in the
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gastropod nacre.

Figure 1 The shell layers of the tropical abalone of Haliotis asinina. (A) General view of the shell before (top) and after (lower) the
mechanical removal of the periostracal and prismatic layers. (B) SEM micrograph of a cross-section through the abalone shell illustrating details
of the periostracum (top) and of the calcified prismatic layer (lower). (C) SEM micrograph illustrating details of the prismatic layer. (D) SEM
micrograph of the boundary between the prismatic (top) and the nacreous layer (lower). (E) SEM micrograph of the nacreous layer (oblique
view). (F) SEM micrograph of the nacreous layer (cross section) illustrating the columnar superimposition of nacre tablets that is characteristic of

upper regions of the SDS-PAGE gel. The discrepancy
between their position in the gel and their lower theore-
tical molecular weight suggests either that the mature
form of these proteins exhibits post-translational modifi-
cations, and/or that the full-length cDNA is not repre-
sented in the EST library.

Interestingly most of the 14 proteins which matches
H. asinina ESTs are present in both the ASM and AIM,
a finding that is in agreement with previous observations
[13,14]. This might be explained by successive protein
maturation events such as progressive insolubilization
via cross-linking and/or protein tanning. The organic
matrix derived from nacre material alone contains at
least 9 of these 14 proteins. In contrast, conceptually
derived proteins ML5A7, ML1E6 (Has-Sometsuke),
ML3E9, ML5B8 and ML5HS8 proteins were detected in
the nacre + prism material, but not in the nacre alone,
suggesting that they are restricted to the prismatic layer.
We propose that these proteins are involved in regulat-
ing the growth and/or orientation of the prismatic layer,
however further in vitro tests should be performed to
test this hypothesis. Even though we carefully removed
the periostracum from the external shell surface by che-
mical treatment, we also cannot exclude the possibility
that these latter proteins are also constituents of the
periostracal layer. We also found that all conceptually

translated EST sequences that match our MS/MS pep-
tides possess a signal peptide, indicating that these
bioinformatically predicted proteins are likely to repre-
sent the entire amino N-terminus and are genuinely
secreted by the mantle epithelium.

New GIn- and Met-rich proteins

Three of the 14 proteins that we have identified here do
not exhibit any sequence similarity with any other pro-
teins, and contain unusually rich Met and Gln domains
(Figure 3; Additional file 1, Table S1). Putative full-
length ORFs for these 3 proteins were deduced from
H. asinina ESTs ML5A7, ML8B1 and ML6A10. Peptides
matching ML5A7 were only detected in nacre + pris-
matic samples. Conversely peptides matching ML8B1
and ML6A10 were detected in nacre only. Following sig-
nal sequence removal ML5A7, ML8B1 and ML6A10 are
characterized by theoretical p/s between 10 and 12, and
theoretical molecular weights of 25, 11 and 12 kDa,
respectively. The protein encoded by ML5A7 is enriched
in Ala (13%) and Leu (10%), while the product of
ML6A10 is enriched in Ala (13%), Pro (13%) and Met
(11%). ML8B1 encodes a protein with a remarkable Gln
content (38%), corresponding to three short poly-glutamine
motifs located in the N-terminus. All three protein
sequences are also remarkably methionine rich (7-11%).



Marie et al. Proteome Science 2010, 8:54
http://www.proteomesci.com/content/8/1/54

MM AIM ASM

kDa .

100 =

120 | we— nar |

100 f

& = i

70 | —

60 | — 110C ssC

SOy or

40 | — 8C S7C

30 | — I7C S6C

25 | u—

20 | — 16 S5C
15C S4C

1 e s3C
I3[

10 [am— 1L S1C

Figure 2 SDS-PAGE fractionation of acid-soluble (ASM) and
acid-insoluble (AIM) shell matrix proteins. The mass of molecular
weight markers (in kDa) is indicated on the left. Following
electrophoresis under denaturing condition, proteins were stained
with CBB. Approximately 80 g of protein material were applied per
well. 11-112 and S1-58 correspond to bands that were excised for in-
gel digestion and MS/MS analysis.

The occurrence of such Met- and Gln-rich domains is an
uncommon feature of biomineralizing proteins, and we
suggest that their occurrence may be related to specific
functions: previous in vitro experiments have shown that
poly-glutamine domains are responsible for protein
aggregation [15], whereas poly-methionine domains sta-
bilize the precipitation of calcium carbonate crystals [16].
Functional characterization of these proteins by in vitro
calcification assays are needed to test these hypotheses.

Repetitive low complexity domain (RLCD) containing
proteins

Several mollusc-shell proteins are known to exhibit
either repetitive motifs, or domains of low complexity.
For example, Nacrein contains a large GN-domain [17],
MSI60 exhibits 39 poly-G blocks and 11 poly-A blocks
[18] and MSP-1 contains GS domains that alternate
with D-rich domains [19]. It has been proposed that
acidic repetitive low complexity domain proteins
(RLCDs) might be a prominent component of the
matrix framework [1,18]. More recently, Suzuki and
co-workers [20] hypothesized that the acidic poly-D blocks
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within Pif-80 binds in vitro to calcium carbonate crystals.
Because alignment-based sequence comparisons between
proteins that contain extensive low-complexity regions
are often phylogenetically uninformative and can lead to
false positive results, phylogenetic analyses are difficult to
perform using these protein sequences [21]. However, it
is likely that RLCD containing proteins are important
constituents of the biomineralization “toolkit”.

We have identified proteins with (RLCDs) from the
shell of H. asinina. In particular, HasCL10contig2 (Fig-
ure 4) and P0025F23_658 (Additional file 1, Table S1)
transcripts encode fibroin-like proteins, which possess
low complexity hydrophobic or acidic domains.
HasCL10contig2 is highly expressed in the mantle [10]
and encodes a 507 amino acid long protein with a 17-
amino acid signal peptide (Figure 4). When the signal
peptide is removed the predicted protein exhibits a the-
oretical molecular mass of 44 kDa and a calculated p/
around 12. Peptides matching this protein are largely
present in both the ASM and AIM extracted from nacre
without SDS-PAGE fractionation. Interestingly, the
sequence of the HasCL10contig2 protein contains
numerous RLCDs and hydrophobic domains including 7
collagen-like -GGSGGxGFG- repeats, 26 -GNG- repeats
and A-rich blocks with high amount of Ser (S) and Lys
(R), that potentially make it poorly suitable for SDS-
PAGE separation.

Protease inhibitor proteins

Two protease inhibitor domain-containing proteins were
identified in the shell matrix of H. asinina (Figure 5;
Additional file 1, Table S1). MS/MS peptides matching
H. asinina EST P0012N13_463 encode a protein that
contains 2 consecutive Kunitz-like protease inhibitor
domains. MS/MS peptides also matched EST ML3E9
that corresponds to a homolog of Perlwapin, which has
been previously described from the nacre of Haliotis
laevigata [6]. Perlwapin exhibits 3 successive WAP
(Whey Acidic Protein) domains. Sequence alignments
with other Kunitz-like and WAP domain containing
proteins from diverse molluscs and metazoans (Figure
5A and 5B, respectively) show that these two protein
families are highly conserved across the Metazoa.

The presence of protease inhibitors in an acellular bio-
mineral is at first puzzling, however this is not an iso-
lated obervation. In the abalones Haliotis rufescens and
Haliotis laevigata, two nacre proteins, Lustrin-A [2] and
Perlwapin [6], contain WAP protease inhibitor-like
domains. Recently, Bédouet and co-workers [22] demon-
strated the presence of active cysteine-proteinase inhibi-
tors in the nacre matrix of the pearl oyster Pinctada
margaritifera. Furthermore, Liu and co-workers
described a putative secreted protein from Pinctada
fucata mantle cells that exhibits sequence homology
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Table 1 Pairing and annotating Haliotis asinina ESTs with shell derived MS/MS peptides
Protein name EST Homology/ Mass kDa Complete  Source of material Best Number of
[GenBank Accession] library* domain (Observed/ sequence/ MASCOT matching peptides
Theoretical) SignalP protein
scores
Band Nacre Pr+
ID Nc
ML5A7 1,2 No homology/no 32/25 Yes/Yes S6 - ASM 459 9
[DW986289] recognised domains 17 - AlM
HasCL10contig2 3 Fibroin-like/Gly and Ala -/44 Yes/Yes - ASM  ASM 455 7
[EZ420619] rich domains - AIM  AIM
POO12N13_463 3 Papilin/2 Kunitz domains 14/215 No/No S3 ASM  ASM 362 6
[GT274423] 14 AM - AIM
ML1E6 1,2 Sometsuke/ependymin 32/20 Yes/Yes S6 - ASM 347 7
[DW986219] domain 17 - AIM
P0006007_675 3 No homology/no 13-48/>19 No/No S2-S7 ASM  ASM 343 6
[GT272916] recognised domains 39 AIM  AIM
PO025F23_658 3 No homology/Asp and 32/223 No/No - - - 343 3
[GT276990] Ala rich domains |7 AIM  AIM
ML3AT1 1,23 No homology/Pro rich 15/16 Yes/Yes S3 ASM  ASM 336 4
[DW986237] domain 14 AIM  AIM
ML6AT0 1,23 No homology/no 13/12 Yes/Yes S2 ASM  ASM 320 5
[DW986342] recognised domains 13 AIM  AIM
ML8B1 1,23 No homology/GIn rich 13/11 Yes/Yes S2 ASM  ASM 195 3
[DW986463] domains 13 AIM AIM
P0011014_517 3 No homology/no 18/=16 No/Yes - - - 189 3
[GT274178] recognised domains 15 AM  AIM
6G3 2 No homology/ 21/21 Yes/Yes S5 ASM  ASM 173 3
[GD272908] ependymin domain 16 AIM  AIM
ML3E9 12,3 Perlwapin/3 WAP -/>15 No/No - - ASM 148 3
[DW986256] domains - - AIM
ML5B8 1,2 No homology/no 32/21 Yes/Yes S6 - ASM 125 2
[DW986296] recognised domains - -
ML5H8 1,23 No homology/Chitin- -/10 Yes/Yes - - ASM 116 3
[DW986339] Binding domain - - AIM

*EST libraries: 1 = H. asinina juvenile mantle SMART cDNA library [8]; 2 = H. asinina developmental microarray library [9]; 3 = H. asinina adulte mantle cDNA
library [10]. “Pr + Nc” indicates “Prisms + nacre” extract. “>" indicates that the theoretical molecular mass is at least the following value, as some sequence

information is missing.

with Kunitz-like and WAP domains [23]. Similar find-
ings were published for other non-molluscan biocalcify-
ing models: a Kazal-type serine-protease inhibitor has
recently been described from the sea urchin calcified-
skeleton matrix [24,25], and a recent proteomic analysis
has demonstrated the presence of numerous protease
inhibitors from the chicken egg shell [13]. Protease inhi-
bitors constitute a wide group of ubiquitous proteins
that are involved in many biological functions. Our data
suggests that the presence of protease inhibitor domains
in biomineral associated proteins play roles (as yet
undefined) for calcified biomineral formation and/or
maintenance. We postulate that the protection of the
organic matrix against degradation by exopeptidases is
the most likely function of these protease inhibitors.
Alternative functions may include roles in remodelling
the shell matrix or in the regulation (activation or inac-
tivation) of other multi-domain matrix components [26].

Ependymin related proteins

Two different ependymin-related proteins, ML1E6 and
6G3, were observed in the shell matrices of Haliotis
asinina (Figure 6; Additional file 1, Table S1). The
MLI1E®6 transcript, Has-sometsuke, is expressed in the
anterior zone of the outer fold of the mantle and maps
precisely to patterns of shell pigmentation, the protein
product of which is therefore very likely located in the
periostracum [8]. Interestingly, we find the Has-Some-
tsuke protein in the external prismatic shell layer and
is very likely also present in the periostracal layer,
whereas 6G3, another ependymin-related protein, is
also present in the nacreous layer. Ependymin-related
proteins constitute a family of extracellular glycopro-
teins of about 200 amino acids containing 6 cysteine
residues, four of which are highly conserved and prob-
ably form intramolecular disulfide bonds, and two
putative N-linked glycosylation sites [27] (Figure 6A).
Furthermore, we notice that ML1E6 was mainly
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Figure 3 Sequences of ML5A7, ML6A10 and ML8B1, 3 new proteins with GIn- and Met-rich domains. Predicted signal peptides are
boxed. Peptides identified by MS/MS are in grey. An asterisk indicate the stop codon.

detected on SDS-PAGE in a 32-kDa band whereas its
theoretical mass is 20 kDa, suggesting that Has-Some-
tsuke is post-translationally modified, probably by gly-
cosylation. Has-sometsuke has a theoretical p/ of 5.6
and is the only acidic protein we observed from our
shell matrix analysis. BLAST alignments indicate that
ML1E6 and 6G3 exhibit similarity with translated
ESTs derived from four molluscs (Figure 6B), but
weaker similarity to deuterostome ependymins [8,9].
Various functional features of this protein family,
including its ability to bind calcium via N-linked sialic
acids residues [28] and to undergo polymerization into

insoluble fibrils [29] support the hypothesis that they
play a direct role in the organization of the shell-
matrix framework.

Putative carbohydrate-binding protein

Our MS/MS peptides also map to an H. asinina EST
(ML5HS), which codes for a secreted protein that exhi-
bits sequence similarity with carbohydrate-interacting
proteins (Figure 7; Additional file 1, Table S1). The con-
ceptually derived mature protein sequence of ML5H8
exhibits a calculated mass of 10 kDa, and a pI of 10.
ML5HS8 contains a short domain rich in cysteine that
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Figure 4 Sequence of HasCL10contig2, a repetitive low complexity domain (RLCD) protein. The predicted signal peptide is boxed.
Peptides identified by MS/MS are in grey. An asterisk indicates the stop codon.




Marie et al. Proteome Science 2010, 8:54
http://www.proteomesci.com/content/8/1/54

Page 8 of 11

A

Kunitz-like domain |

054819 |
B7P3L9Y |
C3Y9D4 |

GT274423| H. asinina
FK028510| H. cumingii
FC614043| L. gigantea

M. musculus

I. scapularis

B. floridae

Kunitz-like domain Il

054819 |
B7P3L9 |
C3Y9D4 |

B

ML3E9

P84811
B5XFI6
Q27087
C3XU78
ATSCV5

ML3E9

P84811
B5XFI6
Q27087
C3XU78
A7SsCV5

ML3E9

P84811
B5XFI6
Q27087
C3XU78
A78CV5

|GT274423 |
FK028510 |
FC614043 |

H. asinina
H. cumingii
L. gigantea

M. musculus

I. scapularis

B. floridae

H.
H.
S.
T.
B.
N.

H.
H.
S.
T.
B.
N.

H.
H.
S.
T.
B.
N.

Concensus_

Consensus sequence

WAP domain |

asinina
laevigata
salar
trichiura
floridae
vectensis

WAP domain Il

asinina
laevigata
salar
trichiura
floridae
vectensis

WAP domain |l

asinina
laevigata
salar
trichiura
floridae
vectensis
seq

—8YPGAYPAICAR--—-YOYSIPRIMEASGYY &l&—-NT e8.NT &—-Viz
Lige —&3¥PGPYPRICAR-——-Y®HSPRINGKAGY Y &6~ NT e[¢l. NT [&—Vix
e VOIRW-GIGICVE====SeSNIBSBePNDE ~FNegeGHVeTAlZ
KEG WYSPPFGAGRAR———--Y&YTIRROEPGRM -LTKRGYASTAIY
MeYe TOYAPERDTACRRGGRSE®DGIBSBEPRRO -SD RIEONIZ
ege TexVODGI -—CDRKG-DMESRIESIBETND -FNESOND ST QI3

nedeSeyA ———RKYEAGPCVVYSDGIFBSPGDK G—— & ¢PRL &E Kig
—-——RKYDAGVCVI Gy FBMPGNE G——-S¢PRRSE Kl
—-—--RRWGMGICAEL@®SNS/HePNDE H-Nel&GHD L
———KPIGAVGLANF &ONBYMeDGS M TN-VGYD&K

I83€| T®ZAPL.LSRDCTRGRRNQEEGRFIHEPSRQ -DESVKV $ONI3
RSEAMZAPGLDGICDR-MGDQEKSISIHERPNQQeF — Ne$OKQ o T Kiz
KPG.CPD...... Covennn yC..D.DCp...KCC...GC...C..P

Figure 5 Sequences of 2 protease inhibitor proteins. These protein sequences are deduced from translated sequences of the entry
PO012N13_463 (A) and ML3E9 (B). (A) An alignment of the 2 Kunitz domains with other protease inhibitor proteins from diverse mollusc and
metazoan origins indicates that the Kunitz-like protein family is highly conserved. (B) An alignment of the 3 WAP domains of Has-Perlwapin with
other molluscan and metazoan Perlwapin proteins reveals the high degree of conservation of the cysteine residues. Positions shaded in black
indicate cases where more than 70% of the residues are identical, and grey where at least 40% of the residues are identical or share biochemical
similarity with the consensus residue. GenBank or Swiss-Prot numbers are indicated on the left.
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shows similarity to the chitin-binding domain of peritro-  these cysteine positions are conserved in ML5HS8. This
phin-A (Pfam: CBM_14), found in various molluscs and  observation indicates that carbohydrate-binding proper-
arthropods. Peritrophin-A is an extracellular matrix pro- ties of the abalone calcified matrix proteins play prob-
tein that contains six conserved cysteine residues that ably an important role in the formation of the calcified
are predicted to form three disulphide bridges. Four of  shell.
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Figure 6 Sequences of ML1E6 and 6G3, 2 ependymin-related proteins. (A) An alignment of 2 shell matrix ependymin-related proteins.
Putative N-glycosylation sites are boxed. Predicted signal peptides are underlined. (B) An alignment of ML1E6 and 6G3 of H. asinina with other
mollusc ependymin-related proteins reveals the high degree of conservation of the cysteine residues between the different forms. Positions
shaded in black indicate cases where more than 70% of the residues are identical, and grey where at least 40% of the residues are identical or
share biochemical similarity with the consensus residue. GenBank or Swiss-Prot numbers are indicated on the left.
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Figure 7 Sequence of ML5H8, a novel putative chitin-binding protein. An alignment of the ML5H8 protein with the sequences of chitin-
binding domains of peritrophin-A type from molluscs and arthropods. Positions with < 80% and < 60% conservation are indicated in black and
gray, respectively. Peritrophin-A is an extracellular domain that contains six conserved cysteines (indicated by #) that probably form three

disulphide bridges. GenBank or Swiss-Prot numbers are indicated on the left.




Marie et al. Proteome Science 2010, 8:54
http://www.proteomesci.com/content/8/1/54

Function and evolution of shell matrix proteins

By comparing the largely unique biomineralising protein
sequences we report here to those from other molluscs,
we confirm the dramatic differences in gene sets used to
build calcified shells [8-10]. Furthermore, our data illus-
trate the remarkable diversity of shell proteins within a
Haliotis genus; except for Perlwapin [6], none of the
peptides we detected displayed similarity to any of the
dozen shell proteins described from H. laevigata or H.
rufescens (for review see [11]). These data support the
idea that shell matrix proteins are less evolutionary con-
strained than would be expected for closely related spe-
cies [30]. This is unexpected given the similar nacre and
prismatic shell microstructures of all abalone shells, and
highlights the need for functional characterisation of
these proteins.

The value of EST libraries for biomineralisation focused
proteomic analyses

This study highlights the value of EST libraries con-
structed from shell secreting tissues when used in con-
junction with a shotgun proteomic approach. The
efficiency of such a proteomics approach relies on the
completeness of the EST data set. In this study, we
exploited a pool of 3 different EST libraries generated
from larval or adult calcifying tissues [8-10]. While
some peptides were represented in all three EST
libraries, others only appeared in one or two libraries
(Table 1). This supports the previous observation of dif-
ferential expression of biomineralising transcripts during
development [9]. Additional fine scale variation in bio-
mineralising gene expression is also likely to occur;
recent investigations of the pearl oyster Pinctada fucata
mantle have detected daily variation in the expression
levels of shell protein-encoding genes [31-33]. These
observations support the idea that the molecular
mechanisms of molluscan shell formation follow finely
regulated chronological events. This point should be
carefully considered, especially when sampling tissues
for transcriptomic analysis of extracellular calcifying
matrices. We are aware that these EST data sets used in
this study are not exhaustive, and future efforts will
likely reveal additional shell proteins For example, a
recent proteomic analysis of the calcified skeleton of the
sea urchin Paracentrotus purpuratus revealed an unex-
pected diversity of matrix proteins, due to the availabil-
ity of a draft genome [24,25,34].

Conclusions

In the field of molluscan biomineralization, this work
constitutes the first attempt to marry transcriptomic
data with proteomic data in order to identify novel shell
matrix proteins. By directly interrogating EST libraries
with proteomic data generated from extracted shell
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matrices, we were able to annotate and describe 14 shell
proteins from the nacreous and the prismatic layers, 12
of which are novel. Screening transcriptomic data with
peptide sequences is therefore a powerful approach to
annotate shell proteins and to fully identify their pri-
mary structure. The challenge that now faces the field is
to characterise the function of the ever-growing list of
novel biomineral associated proteins, using in vivo or in
vitro techniques.

Additional material

Additional file 1: Table S1: Conceptually derived sequences and
MS/MS observed peptides of shell matrix proteins of Haliotis
asinina.

Additional file 2: Table S2: List of shell matrix proteins of Haliotis
asinina identified with only one unique matching peptide by MS/
MS.

Abbreviations
AIM: acid-insoluble matrix; ASM: acid-soluble matrix; SEM: scanning electron
microscopy; WAP: whey acidic protein
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