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Abstract

Background: Citrus is one of the most important and widely grown commodity fruit crops. In this study a label-
free LC-MS/MS based shot-gun proteomics approach was taken to explore three main stages of citrus fruit
development. These approaches were used to identify and evaluate changes occurring in juice sac cells in various
metabolic pathways affecting citrus fruit development and quality.

Results: Protein changes in citrus juice sac cells were identified and quantified using label-free shotgun
methodologies. Two alternative methods, differential mass-spectrometry (dMS) and spectral counting (SC) were
used to analyze protein changes occurring during earlier and late stages of fruit development. Both methods were
compared in order to develop a proteomics workflow that could be used in a non-model plant lacking a
sequenced genome. In order to resolve the bioinformatics limitations of EST databases from species that lack a full
sequenced genome, we established iCitrus. iCitrus is a comprehensive sequence database created by merging
three major sources of sequences (HarvEST:citrus, NCBI/citrus/unigenes, NCBI/citrus/proteins) and improving the
annotation of existing unigenes. iCitrus provided a useful bioinformatics tool for the high-throughput identification
of citrus proteins. We have identified approximately 1500 citrus proteins expressed in fruit juice sac cells and
quantified the changes of their expression during fruit development. Our results showed that both dMS and SC
provided significant information on protein changes, with dMS providing a higher accuracy.

Conclusion: Our data supports the notion of the complementary use of dMS and SC for label-free comparative
proteomics, broadening the identification spectrum and strengthening the identification of trends in protein
expression changes during the particular processes being compared.

Background

Fruit ripening and development has being studied using
transcriptomic, proteomics, and metabolomics approaches
[1-8]. Quantitative proteomics provides an alternative
approach for studies of fruit development. In the last few
years, quantitative proteomics has been widely applied for
the quantification of complex biological samples [9-11].
The most commonly used approach for comparative
proteomic analysis of plant tissues is the application of
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2DE-gels. This method is limited in sensitivity, has a low
dynamic range, it is inefficient when analyzing insoluble
proteins or proteins with very high or low molecular mass
and are limited in their reproducibility [12], although
reproducibility has been improved with the use of differen-
tial imaging gel electrophoresis (DIGE) [13,14]. Alternative
techniques to 2DE-gels are non-gel LC-MS/MS-based
shotgun proteomics [15-18], where quantification is per-
formed using the mass-spectrometer data. Some success
for the quantification of proteins has been achieved by
using stable isotope labeling, *°N, **C, ?H and SILAC [19],
ICAT [20,21], iTRAQ [22] and '®O stable isotope incor-
poration [23]. One of the main limitations of these
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methods is that full labeling of the proteins is rarely
achieved and that different peptides incorporate the label
at different rates which complicates data analysis. Recently,
a label-free method for comparative proteomic analysis
has emerged [9-11,24].

Label-free proteomics allows for the quantification of
peptides using spectral characteristics such as retention
time, m/z ratio and peak intensity by comparing the
direct mass spectrometric signal intensity for any given
peptide (differential Mass Spectrometry, dMS) or by
counting the number of acquired tandem mass spectra
matching to a specific peptide as an indicator for their
abundance in a given sample (spectral counting, SC)
[25,26]. dMS is based on comparisons of chromato-
graphic peaks of peptide precursor ion measurements
belonging to a specific protein extracted from an LC-
MS/MS run [27-32]. This approach is based on the
observation that dMS in most cases is proportional to
the concentration of the peptide in the sample investi-
gated [10,27-29]. Peak intensity for every individual
spectrum is determined and the comparison of spectra
between multiple LC-MS runs provides quantitative
measurement of thousands of peptides. From this mas-
sive data a selected list of differential peptides can be
produced for subsequent fragmentation by LC-MS/MS
for sequence determination and protein identification.
In order to match the massive spectra data according to
retention time and precursor m/z characteristics various
software have been developed. Once matched, expres-
sion ratio in peak intensity is calculated according to
peak areas corresponding to the matched peptides. SC
counting is based on counting and comparing the num-
ber of spectra identifying specific peptides of a given
protein to assess relative protein abundance, also found
to be in good correlation with protein abundance
[15,30].

Proteomics has been used successfully to characterize
and identify changes in plant protein compositions dur-
ing different developmental stages [3,5,33,34], and pro-
teomic comparative analysis of citrus fruits, mainly
using 2DE-gels, have been published recently [35-38].

Label-free comparative proteomics is a relatively new
approach that has been used successfully in different
systems (humans, yeast, fly, etc.) [39-42], but its applica-
tion in plants is scanty [26,43]. Using LC-MS/MS we
recently analyzed soluble and enriced membrane frac-
tions of mature citrus fruit to identity the proteome of
fruit juice cells and classified these proteins according to
their putative function according to known biosynthetic
pathways [18]. Here, we describe a method for the use
of label-free LC-MS/MS-based shotgun differential pro-
teomics for the study of fruit development in Citrus, a
non-model plant lacking a fully sequenced genome. The
method combines the use of dMS and SC and the
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creation of iCitrus, a citrus fruit-specific database and
interface, for the identification of the protein changes
occurring during the development of citrus fruits.

Results

Citrus proteins annotations using iCitrus

Although the citrus genome has not been fully sequenced
yet, a comprehensive citrus EST database has been devel-
oped in the past few years [44]. Several groups have con-
tributed to EST sequencing efforts using different
species, including C. sinensis (sweet orange), C. clemen-
tina (Clementine mandarin), C. paradisi (grapefruit),
Poncirus trifoliata, and other hybrids (C. sinensis x Pon-
cirus trifoliata, Carrizo citrange). A wide range of
libraries derived from multiple reproductive and vegeta-
tive tissues at different developmental stages were used
in addition to different treatments or stresses to create a
relatively large database. To date, there are 582,334 citrus
sequences in the National Center for Biotechnology
Information (NCBI) EST database. With the advantage of
comprehensive sequence dataset in hand, there were
many challenges to be addressed before using the data-
bases for proteomic research. Some of these challenges
arose from the nature of EST databases, over-representa-
tion of highly-expressed genes (and the underrepresenta-
tion of weakly-expressed genes), redundancy, incomplete
sequences, poor annotation etc. The challenge of using
the EST database for proteomics came from the fact that
a highly redundant database with many similar sequences
would artificially decrease the significance of potential
“hits”. On the other hand, a strong reduction in
sequence-based redundancy, relying on sequence similar-
ity rather than identity, would significantly reduce the
number of possible hits. To solve some of these pro-
blems, iCitrus http://citrus.bioinformatics.ucdavis.edu/
was created (Figure 1). The iCitrus collected dataset was
produced by excluding sequences shorter than 50 amino
acids between stop codons and removing redundant
sequences with 100% identity to another longer sequence
in the dataset. Similar sequences, sharing less than 100%
similarity were kept for spectra search. Keeping
sequences sharing high similarity (97-99% identify) was a
necessity because the citrus ESTs database consists of
sequences originated from a wide range of citrus cultivars
and species. Minor differences in nucleotide sequences
between similar ESTs could lead to differences in amino
acid sequences and therefore to differences in virtual
spectra derived from the database during mass-spectra
search. Keeping these sequences served to broaden our
chances of identifying proteins in the databases while dis-
carding them could lead to miss-identification or no
identification of proteins. A disadvantage of this
approach was the redundancy of accessions that were
dealt with by manually aligning the sequences of the
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Figure 1 iCitrus database. Three major sources were used in
creating iCitrus dataset: UC Riverside HarvEST:citrus (C46 assembly),
NCBI/citrus/unigenes and NCBI/citrus/proteins (see text). The first
two datasets were translated into all 6 reading frames, split at stop
codons, and sequences shorter than 50 amino acids were removed.
These were combined with the NCBI protein sequences, and all
three protein sequence sets were then clustered at 100% identity
using CD-HIT http://bicinformatics.licrf.edu/cd-hi/, meaning that
sequences that aligned with 100% identity to a longer sequence in
the combined set were removed. All remaining sequences were
then blasted to TAIR proteins, and separately to the subset of NCBI's
nr database belonging to taxa within Viridiplantae, to collect GO-
term and descriptive annotation for the clustered sequences.

proteins of interest. In a few cases where the accessions
shared a high similarity, the redundancy resulted in the
identification of two or more ESTs with only one peptide.
If these ESTs belong to the same unigene, then two or
more peptides could identify the same specific protein.
To date, there are 62,415 sequences in the iCitrus
collected database; 41,018 from the HarvEST:Citrus
assembly http://harvest.ucr.edu/, 20,949 from NCBI’s
unigenes (C. sinensis and C. clementina), and 448 from
NCBI’s proteins (C. sinensis and C. clementina) (Figure
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1). iCitrus dataset in a FASTA file format and a
description of the iCitrus interface structure can be
found as Additional File 1 and a conversion table of
HarvEST:Citrus, NCBI/Citrus/ESTs and NCBI/Citrus/
Proteins accessions into iCitrus accessions can be
found in Additional File 2: Table S1.

Label-free LC-MS/MS based shotgun proteomics,
differential Mass-Spec and Spectral Counting

To achieve a better identification of differentially
expressed proteins during fruit development and to
decrease sample complexity, the juice sac cells were
fractionated into soluble and membrane-bound proteins
(Figure 2). Two alternative strategies for label-free mass
spectrometric analysis; peptide ion intensities measure-
ments and spectral counting were used. The peptide ion
intensities measurements, also referred as differential
Mass Spec (dMS), integrate the peak area which is pro-
portional to the concentration of the peptide in the
sample (Additional File 3: Figure S1). Determining the
area for each mass extracted peptide ion chromatogram

Early Stage TT
(35mm)

StageIT Stage IIT
(55mm) (80min)

. Membrane Membrane Membrane
| Soluble || boind | | Soluble || S eand | | Soluble || feani |

SIEVE (dAMS)
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Annotations
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Figure 2 Experimental design. Soluble and membrane-bound
proteins were extracted from juice sac cells from at least 20 fruits at
three stages of Citrus fruit development (early Stage II, Stage Il and
Stage Ill) and pooled at each stage. Five technical repeats of each
pooled sample (older vs younger fruit) were each analyzed by SIEVE
using blanks (washes) between each sample run. Comparisons were
conducted in pairs in the following: Stage Il vs. early Stage Il and
stage Il vs. Stage IIl. Methods as described in Experimental
Procedures.
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retention time pair and comparing the areas between
multiple LC-MS runs of different samples can provide a
comprehensive quantification of thousands of peptides
within samples. The alternative strategy, Spectral Count-
ing (SC), calculates the number of MS/MS scans that
are attributed to the same peptide ion. The frequency of
these MS/MS scans correlates with the abundance of a
given peptide in the sample. In this study we have used
dMS strategy to analyze and identify differential proteins
changes during fruit development in citrus juice sac cells
(Figure 2) and SC as an alternative strategy to validate
our finding. Identification of proteins was done by MS
spectra search against the iCitrus database and annota-
tions by using the iCitrus interface.

Label-free relative quantitative analysis detects, selects
and compares spectra that are significantly different
between samples (either by dMS or SC). However, many
of the spectra that were selected as being different in
their intensity or abundance were found to be not statis-
tically different between the developmental stages com-
pared and will be discussed later.

Using dMS, 1494 and 1364 proteins were identified by
at least two peptides in the comparisons between
Stage II (55 mm fruit diameter) versus early Stage II (35
mm fruit diameter) and Stage III (80 mm fruit diameter)
versus Stage II, respectively (Figure 3). A high number
of identified proteins were down- and up-regulated dur-
ing the earlier and later stages of development, respec-
tively (Figure 3a).

Accessions identified by SC and dMS were compared
using both iCitrus and Arabidopsis homologs (Figure 4).

StageIlvs. early StageIT
Soluble Membrane Soluble Membrane
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Up NoChange Down Up Mo Change Down
dMS Soluble 15.6 42 424 784 17 4.6
Membrane 435 16.2 40.3 456 49 54
sc Soluble 26.5 42 315 297 41.7 286
Membrane 245 317 438 234 69.5 21

Figure 3 Numbers of protein identified by dMS and SC.
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Figure 4 Venn diagrams representing the number of proteins
identified by both dMS and SC workflows and the number of
proteins identified by only one of the workflows. (a) Analysis
was conducted by using iCitrus accessions of the identified proteins
(b) Analysis was conducted by using the corresponding Arabidopsis
homologs of the same iCitrus accessions presented in (a).

These comparisons were made to minimize possible
redundancies of identified citrus ESTs and to conserved
citrus protein accessions that might originate from dif-
ferent unigenes but belonging to the same gene family.
Once again, aconitase can provide a good example for
database redundancy as the accessions 45840 and 47264,
sharing 99% amino acid similarity, are essentially the
same unigene originating from two different citrus spe-
cies (Table 1). These accessions shared little similarity
with 39802 and sequence alignment showed that their
sequences did not overlap but shared high homology
with the other members, i.e. 55395 and 43680. Notably,
some proteins did not share homology to any Arabidop-
sis proteins, providing support to the use of citrus acces-
sions for comparisons. In some cases, these accessions
could be assembled to one contig while in other cases
these ESTs could not be assembled. Two possibilities
arose, either these EST sequences originated from the
same gene but did not overlap, therefore could not be
assembled, or these ESTs were originated from different
genes belonging to the same family.

Most of the proteins identified by both dMS and SC
also showed similar expression patterns (Figure 5). Out
of 452 proteins identified by both methods in the com-
parison between fruits at Stage II versus fruits at early
Stage II, 308 proteins (69%) had the same expression
pattern therefore referred as “matching” (Figure 5a). In
the comparison between fruits at Stage III versus Stage
I 51% of the shared proteins displayed similar expres-
sion pattern and the rest fell under the “weak matching”
category (Figure 5a). “Weak matching” refers to proteins
showing significant expression changes with one method



Table 1 Identification and quantification of aconitase by dMS and SC.

dms Stage Il vs. early Stage Il Stage Il vs. Stage |l

HarvEST iCitrus ID  Blast Hit to Ratio Pvalue No. Max. Ratio Pvalue No. Max.

Citrus ID TAIR ID peptides Xcorr peptides  Xcorr
UC46_7402 39802 AT2G05710 249 9.9E-20 3 539 336 3.621E-07 4 4.56
UC46_5405 43680 AT2G05710 253 9.9E-20 2 5.39 13.6 9.9E-20 2 4.56
UC46_5554 47264 AT2G05710 62.0 9.9E-20 2 540 49 0.0007414 3 6.52
UC46_5555 45840 AT2G05710 49.7 9.9E-20 4 540 48 0.0014824 4 6.52
UC46_9228 55395 AT2G05710 253 9.9E-20 2 539 94 4.115E-06 3 5.07

Spectral Counting Stage Il vs. early Stage Il Stage Il vs. Stage Il
HarvEST iCitrus 1D Blast Hit to Bayes Fold Direction No. -Log(e) FDR FDR Bayes Fold  Direction No. -Log  FDR FDR
Citrus 1D TAR ID Factor Change peptides Down up Factor  Change peptides () Down  up
UC46_7402 39802 AT2G05710 0.66 1.88 0 4 93 1.26 091 3046 552 1 3 46 080 000
UC46_5405 43680 AT2G05710 - - - - - - - 14342 12.24 1 2 3.7 1.03 0.88
UC46_5555 45840 AT2G05710 04 1.08 0 3 149 1.20 091 0.58 1.29 0 4 13.0 0.89 0.75
UC46_9228 55395 AT2G05710 042 1.08 0 2 1.7 1.26 091 0.68 1.11 0 3 11.0 0.73 0.86
HarvEST UC46_7402 UC46_5405 UC46_5555 UC46_5554 UC46_9228

Origin Citrus ID iCitrus 1D 39802 43680 45840 47264 55395
C. Sinensis  UC46_7402 39802 87 17 18 86
C. Sinensis  UC46_5405 43680 87 86 86
C. Sinensis ~ UC46_5555 45840 99 90
P. Trifoliata ~ UC46_5554 47264 89
C. Sinensis  UC46_9228 55395

All iCitrus accessions for aconitase that were identified by both methods were homolog to the Arabidopsis gene At2g05710. Identification of aconitase by dMS and SC. The column “direction” under SC represents

up-regulated = 1, no change = 0, down-regulated = -1. Aconitase iCitrus accessions amino acids sequences similarities.
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Figure 5 Comparisons of expression trends of proteins identified by dMS and SC. (a). Up-regulated (1-red), unchanged (0-black), down-
regulated (-1-green). (b-c) Proteins showing the same trend in dMS and SC (strong-match), contradicting trends (no-match) and “weak-match”
for proteins identified by one of the methods as not changing. D-down-regulated, N-no change, U-up-regulated. Strong expression “match’, (U/
U, D/D, N/N according to dMS/SC) (white columns); “weak-match”, (N/U, U/N, D/N, N/D by dMS/SC) (grey columns); “no-match”, (D/U, U/D)
(black columns); (b) Stage Il vs. early Stage Il (c) Stage Il vs. Stage II. (d) Proteins identified by dMS and SC that have the same expression trend
("match”, white), contradicting expression trend ("no-match”, black) and proteins up-regulated or down-regulated in one method but unchanged

in the other ("weak-match”, grey).
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while showed no significant expression differences when
analyzed with the other method (Figure 5b-d). Only few
proteins, 1 and 16, showed contradicting expression pat-
terns in the comparisons between Stage II versus early
Stage II and between Stage III and Stage II, respectively.
The high percentage of proteins shared by dMS and SC
that show the same expression pattern serves also as a
strong validation for protein expression.

Changes in protein expression during fruit development
Label-free LC-MS/MS analysis of juice sac cells indi-
cated significant changes in protein synthesis during
fruit development (Table 2). Changes in the expression
of 1834 and 1004 iCitrus accessions during fruit devel-
opment were identified by dMS and SC, respectively.
These numbers consisted of accessions identified by the
four types of comparisons conducted (Stage II vs. early
Stage II, Stage III vs. Stage 1I, membrane-bound proteins
and soluble), and proteins appearing at more than one
stage of development were only counted once. In most
cases, the discrepancies between the two methods were
due to differences on the bioinformatics associated with
dMS and SC workflows (see Discussion).

A significant number of proteins (772 and 560) were
identified and classified as “not changed” by dMS and
SC, respectively (Table 2). Although these proteins were
found to match differentially expressed peptides, did not
pass the statistical threshold. Although not differentially
expressed, the identification of these proteins provides
valuable information because: (i) they are proteins that
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are active during fruit development; (ii) they strengthen
the confidence in the identification of the same peptides
in other comparisons [39]. Here, we have classified the
fruit proteins into 14 major functional groups (Table 2).
In general, the expression of a large number of proteins
identified decreased during the transition from early
Stage II to Stage II of development (617 were down-
regulated and 451 were up-regulated). This trend
reversed during the transition from Stage II to Stage III
where 850 proteins were up-regulated and 86 were
down-regulated (Table 2). Most of the up-regulated pro-
teins belonged to Metabolism, Processing, Oxidative
processes, Trafficking, Transcription and Transport.

Changes in protein associated with vesicular trafficking
during fruit development

In order to illustrate similarities and disparities between
dMS and SC for the quantitation of protein changes
during fruit development, we analyzed changes in pro-
teins associated with vesicular trafficking and protein
movements. The global changes in protein profiles and
the metabolic processes associated with the quantitative
protein changes during fruit development will be pre-
sented and discussed elsewhere (Katz et al., in
preparation).

In this study, many small G-proteins and other pro-
teins associated with a large number of cellular pro-
cesses such as vesicle formation; vesicular traffic and
docking, etc. [45-47] were found to be differentially
expressed during fruit development (Tables 2, 3).

Table 2 Functional classification of proteins identified by dMS and SC workflows (see Experimental Procedures) after

search of the iCitrus database.

Stage Il vs. early Stage Il

Stage Il vs. Stage Il

Up No Change Down Total Up No Change Down Total

Functional category dMS SC dMS SC dMS SC dMS SC dMS SC dMS SC dMS SC dMS SC
Cell Cycle 0 0 1 1 3 1 2 0 0 0 2 0 0 0 2
Cell Wall 18 2 8 3 8 4 37 4 3 3 3 10 43 17
Energy 26 4 23 1 35 24 39 24 10 12 20 4 2 40 32
Heat Shock/Chaperone 66 25 40 15 29 8 135 48 80 21 55 24 0 10 135 55
Metabolism 86 34 87 44 115 38 288 116 238 53 91 m 5 27 334 191
Oxidative processes 32 Ihl 39 1 34 11 33 90 20 18 24 6 5 114 49
Processing 9 15 34 16 63 14 106 45 62 26 40 35 7 16 109 77
Signaling 30 16 23 16 36 16 48 39 7 14 22 11 Ihl 64 40
Structure 48 2 13 5 20 10 17 25 1 10 2 30 8 65 M
Trafficking 14 6 32 16 41 14 36 40 Inl 39 24 0 1 79 36
Transcription 4 2 26 12 24 12 26 33 4 2 13 3 6 38 23
Translation 65 10 35 28 113 32 213 70 43 5 87 39 10 28 140 72
Transport 29 6 15 16 43 24 46 70 12 29 24 0 1 99 37
Unknown 24 23 50 28 53 30 127 81 69 28 28 49 7 24 104 101
Sum. 451 156 426 222 617 238 1494 616 850 202 428 392 86 149 1364 743

Proteins were classified into 14 major groups and are represented according to fruit development stages comparisons according to the method used (dMS and

SQO).
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Table 3 Vesicular trafficking-related proteins identified by dMS and SC.
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Stage Il (55 mm) vs. early stage Il (35 mm)

Stage Il (80 mm) vs. Stage Il (55 mm)

dMsS SC dMs SC
Gene Annotation iCitrus  Blast Hit Peptides Ratio Bayes Fold Direction* Peptides Ratio Bayes Fold Direction*
Family ID TAIR ID Factor Change Factor Change
Rab RABATa/ARA2 5282  AT1G06400 3 0.03 - - - 2 2.85 - - -
RABA1d/ 50939 AT4G18800 7 0.025 1.34 1.52 0 - - 0.95 1.53 0
Rab118B
RABA1f 23943 AT5G60860 5 0.11 465 319 -1 - - 0.8 12 0
RABA2a/ 33548 AT1G09630 6 072 63362 23 -1 2 743 318 45 1
Rab11C
RABA2b 27900 AT1G07410 3 0026 3302 28 -1 - - - - -
RABB1b/ 28361  AT4G35860 - - - - - 3 3341 - - -
Rab2C
RABB1c 57271 AT4AG17170 5 0.11 72 32 -1 4 28.6 1555 5.02 1
RABD1/FP8 44137 AT3G11730 3 0.33 395 17.8 -1 - 09 145 0
RABD2a/ 22194 AT1G02130 3 0.07 1472 24 -1 2 3124 625 5.00 1
Rab1b
RABD2b/ 21238  AT5G47200 2 0.04 - - - - - - - -
Rab1A
RABETa/Rab8 55887 AT3G53610 3 0.03 549 36 -1 - - 1.04 15 0
RABETe/Rab8E 58806 AT3G09900 2 0.04 - - - - - - - -
RABETc/Rab8/ 21701  AT3G46060 4 1.06 88 1.8 0 2 348 0.82 12 0
ARA-3
RABG3d 44916 AT1G52280 2 0.01 - - - - - - - -
RABG3f/Rab7B 30351 AT3G18820 3 0.006 0.8 1.3 0 2 6.94 216 1.79
RABH1b/ 53105 AT2G44610 5 0.07 478 183 -1 - - 0.75 12
Rab6A
RABH1e 30604 AT5G10260 2 0.05 - - - - - - - -
Arf ARLATC 26509  AT3G49870 3 0.79 0.58 113 0 2 449 1.07 1.67 0
ARFATe 422 AT3G62290 3 013 - - - 3 26.62 - - -
ARFA1f 22081 AT1G10630 5 0.15 - - - 6 19.71 - - -
SAR1c 34375  AT4G02080 - - - - - 3 491 - - -
Ran STL2P/SEC12P- 54385 AT2G01470 - - 2319 537 1 - - 0.67 1.04 0
Like
RANBP1 42600  AT5G58590 5 0.5 34 28 0 7 12980 06 1.98 0
RANBP1b 2905  AT2G30060 - - 13 42 0 5 130.08 280 223 1
RAN3 57970  AT5G55190 2 0.87 0.64 1.82 0 7 20.25 3.7 1.67 0
Rho GP3/ROP4 29311 AT1G75840 2 0.28 - - 0 - - - - -
GDI GDI 34016  AT2G44100 - - 1.58 218 0 3 5.00 0.73 113 0
GDI2-like 876 AT5G09550 - - - - - 2 3.1 - - -
VAMP/R-  SEC22 58654 AT1G11890 2 0.20 269 136 -1 - - 1.06 146 0
SNAREs
VAP27-1 54676  AT3G60600 2 077 - - - - - - - -
VAMP713 23669  AT5G11150 2 141 - - - - - - - -
Qa- SYP132 12539 AT5G08080 - - 3 62 0 2 321 125 165 0
SNAREs  (syntaxin 132)
VAM3 37248  AT5G46860 - - 135 1.86 0 - - 45 23 0
(syntaxin 22)
Qb- VTIT1 24253 AT5G39510 2 0.05 0.65 1.37 0 - - 0.5 12 0
SNAREs
Qc- SYP71 27696  AT3G09740 - - 217 434 0 - - - - -
SNAREs  (SYNTAXIN)
ALPHA-SNAP2 2375  AT3G56190 - - 1.00 1.00 0 - - 641 76 0
ESCRT Il SNF7.1 35782  AT4G29160 4 1.31 4.88 299 0 7 59736 106 55 1
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Table 3 Vesicular trafficking-related proteins identified by dMS and SC. (Continued)

Dynamin ADL6 36589  AT1G10290 - - -

(dynamin-like
protein 6)

others SEC61 35474  AT1G29310 3 010 17170
SEC14 30056 AT1G72160 5 342 377
PATL2 35474 AT1G22530 3 0104 1705
SCAMP 34675 AT1G32050 3 1.70 1.50
SC3 (secretory 30772 AT1G61250 2 0.98 29
carrier 3)
SYT1 45523 AT2G20990 4 87 0.3
COP-I 29871 AT2G21390 2 04 0.6
coatomer, B-
COPa
RTNLB3 42672 AT1G64090 2 053 2.1
reticulon
RTNLB5 13580 AT2G46170 - - 097
reticulon
RTNLB6 22293  AT3G10260 - - 124
reticulon
clathrin heavy 57153  AT3G08530 - - 83.92
chain
clathrin heavy 60690  AT3G08530 2 0.05 63.7
chain
Clathrin light 51128 AT2G20760 2 119 2300591
chain
Clathrin light 21278  AT3G51890 2 118 1511
chain
myosin heavy 38388 AT4G31340 - - 0.6
chain
myosin heavy 37311  AT1G06530 3 0.02 156

chain

- - 2 6.63 - - -
17.65 -1 - - 1.00 14 0
13.65 1 16 1292 4.8 1.5 0
17.65 -1 3 6.83 1.04 143 0
1.55 0 2 411 0.74 1.18 0
6.12 0 - - 1.00 1.02 0
1.5 0 4 264 1.2 1.6 0
1.22 0 1147 131 1.73 0
37 0 2 231 0.72 148 0
1.02 0 - - 4.35 297 0
14 0 2 36.56 187.81 576 1
13.36 -1 - - 0.76 1.17 0
13.65 -1 - - 4645 10.98 -1
11.55 1 2 1.8 08 1.2 0
6.2 1 - - 1.63 1.57 0
1.00 0 - - 0.75 13 0
16 -1 - - 1.1 14 0

* The column “direction” under spectral counting measurement represent expression direction, 1 = up-regulated, 0 = no change, -1 = down-regulated.
Proteins identified by dMS were considered to be upregulated when expression fold > 2, not changed when 0.5 < fold < 2 and down-regulated when fold

change was < 2. For SC Bayes factor of > 10 was used for significance difference.

Several small G-proteins belonging to the sub-families
RAB, ARF, RHO and RAN were differentially expressed
during fruit development. For example, proteins belong-
ing to the RAB-like sub-family (nomenclature according
to Vernoud et al., [48]); RABAla, RABA1 d, RABAI(,
RABA2a, RABA2b, RABB1b, RABBlc, RABD1, RABD2a,
RABD2b, RABEla, RABElc, RABEle, RABG3 d,
RABG3f, RABH1b and RABH1e were found to be differ-
entially expressed (Table 3). During the transition
between early Stage II to Stage II most of this group of
proteins was down-regulated according to dMS, except
for RABA2a and RABEIc. Similarly to dMS, SC showed
that RABA1f, RABA2a, RABA2b, RABBlc, RABD]I,
RABD2a, RABEla and RABH1b, were down-regulated
while no changes were detected in RABA1 d, RABEIlc
and RABG3f. During the transition from Stage II to Stage
III, RABAla, RABA2a, RABB1b, RABBlc, RABD2a,
RABE1c and RABG3f were shown to be up-regulated by
dMS (Table 3). SC detected up-regulation only for
RABA2a, RABBlc and RABD2a at these stages. Few
members of the ADP-ribosylation factor (ARF) were also

found to be differentially expressed during fruit develop-
ment. ARFAle and ARFAI1f were down-regulated during
the transition from early Stage II to Stage II. On the
other hand, ARLAlc remained unchanged (Table 3).
ARFAle, ARFA1f, ARLAlc and SAR1 provide another
example of the difference in accuracy between dMS and
SC. While dMS indicated that these four proteins were
up-regulated during the later stages of fruit development
(Table 3), SC indicated no change. Four members of the
RAN family, SEC12p, RANBP1, RANBP1b and RAN3
were identified in this study. The expression of RAN3
remained unchanged during the early stages of fruit
development (as shown by both dMS and SC) but was
up-regulated during the later stages. Both dMS and SC
indicated that the expression of RANBP1b was up-regu-
lated during the later stages of fruit development while
only dMS showed up-regulation of RANBP1. SEC12p
was up-regulated during the early stages and remained
unchanged during the later stages of fruit development.
Among the members of the RHO family, ROP4 was
down-regulated at earlier stages of development (Table 4).
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Interestingly, dMS showed that two RAB GDI (GDP-RAB
dissociation inhibitors), GDI1 and GDI2-like were up-
regulated during the later stages of fruit development
while only GDI1was identified by SC. Three R-SNAREs
were identified; SEC22 that was down-regulated during
the transition from early Stage II to Stage II, VAMP27-1
and VAMP713 were identified but were not found to be
differentially expressed. Five Q-SNAREs were identified
but only VTI11 (Qb-SNARE) was found to be down-regu-
lated during early stages of development while SYP132
(Qa-SNARE, syntaxin) was found to be up-regulated dur-
ing late stages of development. SNF7, a component of the
endosomal ESCRT III complex that functions in cargo
recognition and sorting [49], was up-regulated during the
late stages of development. Additional proteins related to
vesicular trafficking such as dynamin, COP-I coatomer,
reticulon 3 and 6, and proteins related to secretory mem-
brane carriers such as SEC14, PATL2 and SYT1 were up-
regulated during the late stages of fruit development,
while SEC 14, SYT1, and light chain of clathrin were up-
regulated during the transition from early Stage II to Stage
II. Heavy chain of clathrin was down-regulated throughout
development (Table 3).

Differential protein expression was also found in other
important groups of proteins, actins and tubulins, key
factors in trafficking, cell division and enlargement [50].
TUBL, TUA3, TUA4, TUB5, TUA6, TUB6 and TUBS
were down-regulated in the transition from early Stage
IT to Stage II (Table 4). TUB1, TUA4, TUB5, TUA6 and
TUB6 were down-regulated further during the transition
from Stage II to Stage III while TUB7 and TUBS were
up-regulated during this transition. Actins, driving vesi-
cular movement towards their destination, showed sig-
nificant changes during fruit development (Table 4).
ACT1, ACT7, ACT8 and ACT11 were down-regulated
during the transition from early stage II to stage II and
were up regulated during the transition from stage II to
stage III (Table 4).

Down-regulation of other proteins related to the vesi-
cle movements such as CaM5 (which binds to the
motor protein kinesin [51,52] and myosin were detected
(Table 4). Profilins, PFN1, PFN3 and PFNS5, involved in
actin polymerization and cytoskeleton organization did
not change during the transition from early Stage II to
Stage II, but PFN1 and PFN3 were up-regulated during
the transition from Stage II to Stage III. Another pro-
tein, ADF4, involved in actin de-polymerization was
down regulated during the transition to Stage III.
Microtubule Associated Protein 65 (MAP65) and KIS
(Tubulin cofactor A) involved in tubulin complex
assembly and cell division [53,54], were down-regulated
throughout fruit development (Table 4).

Transporters play a crucial role in cell growth and
homeostasis, especially in specialized solute accumulating
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cells such as citrus juice cells. As expected, many changes
in transporters protein expression were noted during
fruit development (Table 5). During the transition from
early Stage II to Stage III, there was a significant down-
regulation of subunits of lysosomal ATPases and cation
transporters associated with K*- and Na*-coupled trans-
port. On the other hand, only one plasma membrane-
bound ATPase displayed down-regulation (similar to
AHAR), while those similar to AHA2, AHA4 and AHA10
were not significantly changed. In general, these changes
were noted using both dMS and SC. Most of the proteins
that were down-regulated during the transition from
early to Stage II, were up-regulated during the transition
from Stage II to Stage III (Table 5), suggesting their role
during fruit expansion. Similar results were seen with
mitochondrial-bound proteins such as ACP4, ADP/ATP
carriers and others. Two tonoplast monosaccharide
transporters, TMT1land TMT2 were up-regulated during
the transition from early to stage II and TMT2 was
further up-regulated during the later stages of fruit devel-
opment. A dicarboxylate/tricarboxylate carrier was up-
regulated throughout development. Plasma membrane
water channels PIP1B/PIP1;2, TMP-C/PIP1;4, PIP2;8/
PIP3B and PIP2;5/PIP2 D were down-regulated during
the transition from early to Stage II according to SC
(Table 5).

Discussion

In this study we describe a label-free shotgun approach
to establish a proteomics workflow for the identification
of the protein changes occurring during citrus fruit
development. We analyzed and compared juice sac cells
extracted from fruits at three stages of development.
The end of Stage I (early Stage II), characterized by
extensive cell division; Stage II, where cell division
ceases and the juice cell sacs expand with the accumula-
tion of large amounts of solutes and water; and Stage
111, where the fruit matures and ripens [55,56]. It should
be noted that it was practically impossible to extract
juice sac cell proteins at Stage I (fruit diameter ~10-15
mm) because at this stage the juice sac cells are not well
developed.

Comparative proteomics studies in plants are still lag-
ging behind studies done in mammalian cells and are
predominantly performed by employing 2DE-gels [57].
Although differential proteomics studies employing
label-free quantification have been published during the
last few years [9,10,24], in plants these studies are scarce
[26,43].

In order to employ an efficient proteomics study in
citrus, a plant species lacking a full sequenced genome,
we established a workflow that dealt with few of the
problems arising from using a ESTs database. We cre-
ated iCitrus, a database and interface that collected
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Table 4 Structure-related proteins identified by dMS and SC.
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Stage Il (55 mm) vs. early stage Il (35 mm)

Stage Ill (80 mm) vs. Stage Il (55 mm)

dms SC dMs SC

Annotation iCitrus  Blast Hit Peptides Ratio Bayes Fold Direction* Peptides Ratio Bayes Fold Direction*
ID TAIR ID Factor Change Factor Change

TUB1 (tubulin beta-1) 33157  AT1G75780 4 0.024 - - - 2 0.06 - - -
TUA3 (tubulin alpha-3) 46363  AT5G19770 4 0.07 - - - - - - - -
TUA4 (tubulin alpha-4) 22742 AT1G04820 10 0.025 2468 2.83 -1 1473619 349 -1
TUA4 (tubulin alpha-4) 28975  AT1G04820 10 0.025 - - - 4 0.16 - - -
TUA4 (tubulin alpha-4) 37760  AT1G04820 8 0.026 884.12 10.19 -1 3 0.7 0.6 14 0
TUBS (tubulin beta-5) 30386 AT1G20010 9 0.02 17.65 46 -1 4 041 527 9.15 -1
TUBS (tubulin beta-5) 32879  AT1G20010 9 004 3125 46.15 -1 - - - - -
TUBS (tubulin beta-5) 50323 AT1G20010 10 002 2789 143 -1 3 04 16293 3334 -1
TUBS (tubulin beta-5) 51971  AT1G20010 10 0.025 537 26.95 -1 4 039 12048 32.23 -1
TUBS (tubulin beta-5) 53023 AT1G20010 9 0.033 3784 492 -1 - - - - -
TUAG (tubulin alpha-6) 2232 AT4G14960 7 0.044 - - - - - - - -
TUAG (tubulin alpha-6) 48045  AT4G14960 4 0.025 - - - 2 21.7 - - -
TUBG6 (tubulin beta-6) 54455  AT5G12250 6 0.027 - - - 218 - - -
TUB7 (tubulin beta-7) 54189  AT2G29550 2 06 - - - 2 219 - - -
TUB8 (tubulin beta-8) 55174 AT5G23860 5 0.022 - - - 3 45.85 - - -
ACTT (actin 1) 45172 AT2G37620 3 03 - - - 3 2249 - - -
ACT7 (actin 7) 3401 AT5G09810 6 0.025 4261 224 -1 - - - - -
ACT7 (actin 7) 31765  AT5G09810 6 022 - - - 5 17.50 - - -
ACT8 (actin 8) 57479  AT1G49240 13 0.04 20.5 212 -1 8 2193 2036 212 1
ACTT1 (actin 11) 51444 AT3G12110 4 0.26 - - - 3 27.16 - - -
CAMS (Calmodulin 5) 18478  AT2G27030 - - 7135 1.85 -1 - - 32767 2.69 -1
CAMS5 (Calmodulin 5) 51416  AT2G27030 7 0.15 - - - - - - - -
KIS (KIESEL) 26013 AT2G30410 - - 51.78 4.89 -1 - - 488 8.36 -1
VLN3 (VILLIN 3) 11096  AT3G57410 - - 1.19 3.00 0 - - 1.55 1.74 0
microtubule associated 38803 AT4G26760 4 003 9554 283 -1 - - 1356 136 -1
protein (MAP65/ASE1)
PEN1/PRF1 (PROFILIN 1) 4145 AT2G19760 2 1.36 - - - 15.81 0.80 1.14
PFN3/PRF3 (PROFILIN 3) 23065 AT5G56600 147 0.85 14 0 15.81 14 38
PRF5 (PROFILINS) 5851  AT2G19770 - - 0.9 1.34 0 - - 0.6 1.03
ADF4 actin 7407 AT5G59890 - - 6.8 52 0 - - 28.89 104 -1

depolymerizing

* The column “direction” under spectral counting measurement represent expression direction, 1 = up-regulated, 0 = no change, -1 = down-regulated.
Proteins identified by dMS were considered to be up-regulated when expression fold > 2, not changed when 0.5 < fold < 2 and down-regulated when fold
change was < 2. For spectral counting Bayes factor of > 10 was used for significance difference.

sequences from three different sources, HarvEST:Citrus
http://harvest.ucr.edu/, NCBI’s Citrus unigenes and
NCBI’s Citrus proteins http://www.ncbi.nlm.nih.gov/
Taxonomy/Browser/wwwtax.cgi?mode=In-
fo&id=2711&lvl=3&lin=f&keep=1&srchmode=1&un-
lock to create one unified database with reduced
redundancy for mass spectra search. iCitrus was cre-
ated to provide a compact database for the identifica-
tion of citrus proteins and a more accurate
quantitative expression measurements. The iCitrus
interface enabled a fast identification of lists of acces-
sions including Arabidopsis homologs, and the use of
bioinformatics tools such as MapMan, AraCyc and
Cytoscape (Katz et al. in preparation).

The iCitrus resource is essentially an interface that
can be used to access pre-calculated Blast results. iCi-
trus itself does not make or summarize GO assignments
based on rules that weight GO terms from various hits;
this is the (perfectly reasonable) philosophy behind Blas-
t2GO and related tools. We chose to allow users,
instead of iCitrus, to determine if they trust and adopt
particular annotations or not. We took this approach to
allow individual users to use specific knowledge of pro-
tein families or taxonomical differences (i.e. Citrus ver-
sus Arabidopsis) to influence their interpretation of the
BLAST results. In addition, there may be cases in which
GO annotation is absent in the BLAST results against
Arabidopsis or Viridiplantae, but a consensus could


http://harvest.ucr.edu/
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=2711&lvl=3&lin=f&keep=1&srchmode=1&unlock
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Table 5 Transport-related proteins identified by dMS and SC.
Stage Il (55 mm) vs. early stage Il (35 mm) Stage Il (80 mm) vs. Stage Il (55 mm)

dms SC dms SC

Annotation iCitrus  Blast Hit Peptides Ratio Bayes Fold Direction* Peptides Ratio Bayes Fold Direction*

ID TAIR ID Factor Change Factor Change
Ca’" -ATPase 45644  AT1G07670 - - 1.2 29 0 2 2088 2799 499 1
Ca’*/Na* exchanger 47787  AT1G53210 2 027 1427 3.00 -1 2 904 071 1.15 0
KEA2 (K*/H* antiporter) 36862 AT4G00630 2 0.40 141 1.75 0 - - 038 12 0
porin, putative; voltage- 23759 AT3G01280 2 0.19 139 6.34 -1 2 6.09 1591 481 1
dependent anion
channel
DET3 C subunit C (V- 58235 AT1G12840 3 027 4553 3.26 -1 - - 12 148 0
type H'- ATPase)
AVP1 (vacuolar H 36100 AT1G15690 4 2.31 1.1 12 0 2.76 1.63 0
+-PPiase)
VHA-A 27256  AT1G78900 13 004 1011648 3.99 -1 12 994 3882 22 1
VHA-A3 (V-ATPase) 49974 AT4G39080 4 044 - - - 3 401 - -
V-type ATPase subunit 3683  AT1G76030 8 0.05 - - - 5 13.78 - - -
B1
V-type ATPase subunit 62399 AT4G38510 11 0.06 - - - 9 11.25 - -
B2
V-type ATPase subunit 37671  AT1G20260 11 0.06 140.60 213 -1 9 1125 1004 264 1
B3
V-type ATPase subunit D 23422  AT3G58730 - - 344 54 -1 - - 1.55 145
V-type ATPase subunit 52391  AT4G11150 - - 19.83 322 -1 2 512 7.23 194
El
VMAT0 (V-type ATPase 28722  AT3G01390 3 0.28 36.6 28 -1 - - 0.15 1.78 0
10); Subunit G
V-type ATPase subunit H 38700 AT3G42050 6 0.25 366 282 -1 4 1357 058 1.06 0
AHA2 (H*-ATPase 2) 50370 AT4G30190 3 053 0.98 123 0 4 1179 175 1.49 0
AHA4 (H*- ATPase 4) 28397  AT3G47950 3 1.14 11055 204 -1 3 740 09 15 0
AHA8 (H*- ATPase 8) 56228 AT3G42640 2 035 - - - 2 13.60 - -
AHA10 (Autoinhibited H 56764  AT1G17260 4 113 58 155 0 4 4148 136 1.19 0
*- ATPase isoform 10)
H*- ATPase 42025  AT3G28710 2 011 335 18.72 -1 2 1727 2204 437 1
TMT1 (tonoplast 44853 AT1G20840 3 2479 30 1.1 0 - - 382 5.1 1
monosaccharide
transporter1)
TMT2, (tonoplast 41259  AT4G35300 8 3269 16121 2.64 1 6 15.26 9.5 19 0
monosaccharide
transporter 2
GPT2 (glucose-6- 44184  AT1G61800 2 0.10 282 123 -1 - - 08 12 0
phosphate/phosphate
translocator 2)
mannitol transporter 32978  AT2G16130 - - 439 18.8 -1 - - 58 32 0
LPT(lipid transfer protein) 45077  AT1G27950 2 001 525800 2244 -1 - - - -
LTP3 58907  AT5G59320 - - 2.86 4 0 - - 7447 21.8 -1
PDR6/PDR6 (pleiotropic 26072 AT2G36380 - - 45 7.1 0 - - 49.8 39 1
drug resistance 6);
ATPase
PDR11/PDR11 52044  AT1G66950 - - - - - 2 1174 118 1.56 0
(pleiotropic drug
resistance 11); ATPase
PDR12/(PLEIOTROPIC 19314 AT1G15520 - - 0.98 1.03 0 2 1497 544 346 0
DRUG 12); ATPase
MAPR2 (membrane- 28962  AT2G24940 3 1.62 157 1.65 0 3 4568 138 1.69 0

associated progesterone
binding protein 2)
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Table 5 Transport-related proteins identified by dMS and SC. (Continued)

MRP4 (multidrug 46730  AT2G47800 2 136 262
resistance-associated

protein 4)

PGP7 (P-GLYCOPROTEIN 10552  AT5G46540 - - 2.06
7); ATPase

PIP1B (plasma 18285  AT2G45960 - - 149.18
membrane intrinsic

protein 1;2); water

transport

PIP2;8/PIP3B (plasma 25444 AT2G16850 - - 462
membrane intrinsic

protein 2;8); water

channel

PIP2,5/PIP2 D (plasma 41682  AT3G54820 - - 635.26
membrane intrinsic

protein 2;5); water

channel

TMP-C (plasma 28678  AT4G00430 3 0.11 3506
membrane intrinsic

protein 1;4); water

channel

protein transporter 51128  AT2G20760 3 30 0.2
protein transporter 21278  AT3G51890 2 11894 1510
TOM20-3 (translocase of 33905  AT3G27080 4 045 0.6
outer membrane)

ACP4 (acyl carrier 4) 25090  AT4G25050 3 034 3.1
AAC2 (ADP/ATP carrier) 53189  AT5G13490 0.27 16767
AAC3 (ADP/ATP carrier) 26451 AT4G28390 10 0.22 1040
mitochondrial phosphate 44051  AT5G14040 0.10 10.8
transporter

PDE120 protein import 57128  AT5G16620 2 0.34 -
(Tic40)

di/tricarboxylate carrier 39221 AT5G19760 5 56.47 0.52
TOM22-V (translocase 38717  AT5G43970 - - 160
outer mitochondrial

membrane)

Lipocalin 23197  AT5G58070 2 29.74 442

264 0 5 5812 193 26 1
556 0 - - 104 36 1
27.06 -1 - - - - -
23 -1 - - 09 1 0
39.02 -1 - - - - -
10.97 -1 - - 2.76 2.70 0
16 0 2 1.80 084 1.22
6.2 1 - - 1.63 1.57
1.16 0 3 475 1802 297 1
227 0 - - 134 7.8 1
10.36 -1 5 2136 101 1.02 0
348 -1 6 7616 3295 2.75 1
3 -1 2 429 079 1.2 0
149 0 2 2592 069 1.13
17.8 -1 - - 298 2.65
43 1 3 1049 4034 2.3 1

* The column “direction” under spectral counting measurement represent expression direction, 1 = up-regulated, 0 = no change, -1 = down-regulated.
Proteins identified by dMS were considered to be up-regulated when expression fold > 2, not changed when 0.5 < fold < 2 and down-regulated when fold
change was < 2. For spectral counting Bayes factor of > 10 was used for significance difference.

emerge from the descriptive text accompanying a hit.
We think this combined approach of manual annotation
with the assistance of pre-computed BLAST results is
more effective when predicting functional information
for a not well-annotated organism like Citrus.

Two widely used, but fundamentally different, label-
free methods for quantification were used in this study;
peak integration (dMS) and spectral counting (SC). For
dMS, we used a two-fold change as a threshold for dif-
ferential expression of the identified proteins [25] and a
Bayes factor of 10 for spectral counting [58]. Such a
stringent threshold is needed because the protein ratios
are calculated by averaging the intensity weight of pep-
tide ratios, and because the number of peptides identify-
ing each protein is highly variable. In most cases,
both methods identified similar proteins with some

discrepancies (Figure 4a). These discrepancies derived
from the way SIEVE (for dMS) and Scaffold (for SC)
handled the peptides information. Scaffold is able to
identify peptides in similar proteins and group them
together, thus identifying database redundancy, on the
other hand, SIEVE does not group similar proteins.
When we compare the number of identified proteins by
the two methods using the corresponding Arabidopsis
homologs of each iCitrus accession identified (Figure
4b) the differences decreased significantly, particularly
for dMS (Figure 4). Yet, additional redundancy could
arise from possible gene families in Citrus. The wide
range of Citrus species used to create HarvEST:Citrus
database including Citrus sinensis, Citrus paradise,
Citrus unshiu, C. reticulata, C. jambhiri, C. aurantium,
C. clementina, C. macrophylla and Poncirus trifoliate,
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consists of sequences that are similar but not identical
therefore were not screened out from the iCitrus data-
set. In addition, some of the sequences in the database
that might originate from the same unigene did not
overlap therefore could not be assembled, contributing
to the difference in number of proteins identified (Table
1).

Currently, non-overlapping sequences cannot be
assembled until more ESTs can be produced to cover
the missing gaps or until the Citrus genome is fully
sequenced [59]. A significant number of proteins (144 in
dMS and 118 in SC in the Stage II vs. early Stage II
comparison, and 119 in dMS and 255 proteins in SC, in
the Stage III vs. Stage II comparison) were identified by
only one of the methods due to the inherent differences
of dMS and SC workflows. SEQUEST and SIEVE (dMS
workflow) use protein probability cut-off based on false
discovery rate (FDR) according to the Decoy method
[60]. X!Tandem, Scaffold and Qspec (SC workflow) use
peptide identification probability criteria as specified by
the Peptide Prophet algorithm [61]. The different work-
flows affect some of the proteins identification. The per-
formance of the SC method depends strongly on the
depth of the MS/MS sampling because ratios by SC are
most significant for proteins with large numbers of pro-
duct ion spectra, while ratios by dMS are most signifi-
cant for proteins with large numbers of overlapping
peptide ions [25]. This also explains the higher percen-
tage of proteins that were found to be significantly dif-
ferent by dMS and not significant by SC (Figures 3, 5a).
Therefore, dMS provides more accurate measurements
of compared samples while SC is faster and easier to
use. Our data show that dMS is more accurate in mea-
suring differences in protein expression [25]. dMS pro-
vide rich information of the LC-MS data but requires a
massive computational effort to be spent on processing
the data including background filtering, peak frame
detection and alignment [62,63]. Spectral counting is
conceptually simpler and can be as sensitive as dMS in
terms of detection range while retaining linearity
[25,30,64]. Nevertheless, SC is less accurate in detecting
differences in protein expression, in particular for less
abundant proteins. Our results clearly show that the
integrated use of both methods for quantification
increases the power for detecting changes in shotgun
proteomics experiments, and that both methods should
be use in combination to gain insight of the complex
protein network and a complete identification of its
components.

Changes in a large number of small GTPases were
identified during citrus fruit development. The expres-
sion of a relatively large number of members of the
RAB, ARF, RHO and RAN families of small GTPases
changed during the different stages. Although we cannot
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assign specific roles to all of these proteins, they clearly
indicate a different role(s) of these members during the
stages of citrus juice sac cell development. Vesicular
trafficking is essential for fruit development [65-67].
During the Stage I there is intensive cell division [56].
Cytoskeleton elements (actins, tubulins, etc.) together
with small G-proteins and coatomer complexes are vital
to cell division, cell plate formation, cell polarity, etc.
[68]. The expression of many of these proteins
decreased during the transition from early Stage II to
Stage II. This correlated well with the attenuation of cell
division in the growing fruit and the prevalence of cell
expansion. This notion was reinforced by the notable
increase in expression of other small GTPases, auxiliary
proteins and cytoskeletal components. Similar to the
small G-proteins, changes in the expression of proteins
associated with vesicular movements, docking and
fusion were seen. In addition to different SNAREs (Qa,
Qb, Qc, syntaxins, etc.), there was changes in COPI
coatomers, clathrin, dynamin, and others suggesting the
occurrence of endocytosis, exocytosis and vesicular traf-
ficking during fruit development. Notably, while the
expression of plasma membrane-associated H'-ATPases
did not change during the early stages of development,
changes in endosomal-associated H*-ATPases (V-type)
paralleled the changes seen in the secretory and vesicu-
lar trafficking machinery. V-type ATPases and organellar
acidification is essential for vesicular trafficking along
exocytotic and endocytotic pathways [69,70].

Although significant changes in sugar contents and
sugar homeostasis are expected during fruit develop-
ment [71,72], changes in expression of only two putative
vacuolar monosaccharide transporters (TMT1 and
TMT2) were noted. A plausible explanation is that the
expression of other sugar transporters did not change
(although they could have been modified by post-trans-
lational mechanisms). In support of this notion, Etxeber-
ria et al. [73,74] demonstrated a mechanism of sugar
transport into the juice sac cells and sucrose into the
vacuoles that is mediated by endocytosis and intracellu-
lar vesicular trafficking. The protein inventory developed
in this work, provides a preliminary glance at the func-
tion(s) of these proteins during the different stages of
fruit development and in particular during cell division
(Stage I, early Stage II) and cell expansion (Stage II) and
assimilate mobilization, sugar accumulation and pro-
cesses regulating fruit maturation and ripening.

In conclusion, we developed a workflow for the analysis
and identification of proteins during fruit development in
citrus, a non-model plant, using comparative label-free
shotgun proteomics. We established iCitrus, a compre-
hensive sequence database by merging three major
sources of sequences and improving the annotation
of existing unigenes. iCitrus provided a useful
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bioinformatics tool for the high throughput identification
of citrus proteins. Two methods for label-free based shot-
gun proteomics were used and compared; peak integra-
tion (or differential mass-spec) and spectral counting.
We have identified approximately 1500 citrus protein
accessions expressed in fruits and quantified their expres-
sion changes during fruit development. Our results
showed that both methods can provide significant infor-
mation on protein changes, with dMS providing higher
accuracy. Our results clearly suggest that dMS and SC
are matching, broadening the identification spectrum and
providing complementary data on the change trends dur-
ing the particular processes being compared.

Methods
Plant material, protein extraction and precipitation
Orange Navel fruits at three different developmental
stages, early stage II (35 mm in fruit diameter), stage II
(55 mm) and stage III (80 mm) [55] were obtained from
the Lindcove Research Center, University of California,
Exeter, CA. Juice sacs were collected from at least 20 fruits
and pooled at each stage. Two independent biological
repetitions from two consecutive years were used and pro-
teins were isolated as described before [18]. Soluble pro-
teins were precipitated using a chloroform/methanol
extraction method as described by Wessel and Flugge
[75]. The samples were resuspended with 100 pl of 1%
Acetonitrile and sonicated for 10 min and centrifuged at
10,000 g for 3 min. The supernatant was spin-dialyzed
into 50 mM ammonium-bicarbonate (AMBIC), then pre-
pared for MS analysis using standard reduction, alkylation,
and tryptic digest procedures [76]. Dichloromethane was
added (50/50 v/v with aqueous digest) before vortexing for
1 min. Samples were centrifuged for 5 min at 10,000 g in a
microcentrifuge and the upper layer-containing peptides
dried down and the peptides resolubilized in 2% acetoni-
trile/0.1% trifluoroacetic acid for LC-MS/MS analysis.
Membrane-bound proteins were spin-dialyzed into
50 mM AMBIC. An endo-polygalacturonanase (Mega-
zyme) was employed to degrade pectins overnight at
room temperature and the suspensions centrifuged and
the pellets retained. Membranes were resolubilized in
50 mM AMBIC and digested with trypsin. The suspen-
sion was centrifuged 10 min at 10,000 g and the super-
natant containing tryptic peptides retained. Delipidation
was performed with dichloromethane and the peptides
resolubilized in 2% acetonitrile/0.1% trifluoroacetic acid
for LC-MS/MS analysis.

Mass Spectrometry and Data Analysis

Digested peptides were separated by reversed-phase
chromatography using a Waters nanoACQUITY-UPLC
system (Milford, MA), with a Waters BEH C;g 1.7 um,
100 um x 10 cm column. A binary solvent gradient was
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employed; buffer A was composed of 0.1% formic acid
and buffer B composed of 100% acetonitrile (CAN). The
120 min gradient consisted of the steps 2-45% buffer B
in 40 min, 45-80% buffer B in 65 min, hold for 1 min,
80-2% buffer B in 4 min, then hold for 10 min. Sepa-
rated peptides were analyzed in a Thermo-Scientific
LTQ-FT Ultram mass-spectrometer (San Jose, CA) with
a Michrom captive spray nano-electrospray ionization
source at a flow rate of 2 ul/min. MS and MS/MS spec-
tra were acquired using a top 4 method, where the 4
most abundant ions in the MS scan were selected for
automated low energy Collision-induced Dissociation
(CID) with a 30 s exclusion time and repeat count of 2.
The FTMS scan was obtained for the m/z range 300-
1400 Da at 50,000 resolution. An isolation width of
2.5 Da was used for ITMS, and a normalized collision
energy of 35% was used for the fragmentation. Five
technical repeats of each pooled sample (older vs
younger fruit) were each analyzed by SIEVE using
blanks (washes) between each sample run.

Protein Identification and Validation, dMS workflow
Tandem mass spectra were extracted with Xcalibur ver-
sion 2.0.7. All MS/MS samples were analyzed using
SEQUEST (Protein Discoverer 1.1; Thermo-Scientific,
San Jose, CA). SEQUEST was set up to search a FASTA
file of the iCitrus Protein Database (see below), assum-
ing the digestion enzyme trypsin. SEQUEST was
searched with a peptide ion mass tolerance of 25 ppm
and a fragment ion mass tolerance of 1.0 Da. Oxidation
of methionine and iodoacetamide derivative of cysteine
was specified in SEQUEST as possible modifications.
DTASelect software was used to filter out low score
matching. The filtering criteria consisted of Cross-
correlation (xcorr) values larger than 1.5 for single-
charged ions, 2.2 for double-charged ions, and 3.3 for
triple-charged ions, for both half or fully tryptic pep-
tides. This resulted in a false discovery rate of less than
5% using a decoy search strategy.

Differential Expression mass spectrometry, dMS workflow
Samples were analyzed using a Thermo Scientific LTQ-
FT mass-spectrometer and a Michrom-Paradigm HPLC.
Peptides were separated using a 200 um x 15 cm
Michrom Magic C18 reverse-phase column over 45 min
using an acetonitrile gradient of 2%-60%. The mass-
spectrometer was set to acquire spectra in standard top
3 method where 1 high resolution scan (100 K resolu-
tion) was acquired every sec with subsequent MS/MS
spectra acquired in the L'TQ simultaneously.

Samples were analyzed using SIEVE (Thermo Scientific,
San Jose Ca). SIEVE is a label-free-differential expression
package that aligns the MS spectra over time from differ-
ent experimental conditions and then determines features
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in the data (m/z and retention time pairs) that differ across
the different conditions. These differences were assigned
using various statistics methods such as a P-Value and stan-
dard deviation and then sorted based on significance [10],
based on the values obtained from the data of each biologi-
cal replicate. Label free proteomic profiling was accom-
plished using SIEVE 1.3 (Thermo Scientific, San Jose, CA).
The following parameters were set to align the retion time
and generate the frames needed for abundance calculations.
Alignment Parameters; Alignment Bypass = False, Correla-
tion Bin Width = 1, RT Limits For Alignment = True, Tile
Increment = 150, Tile Maximum = 300, Tile Size = 300,
Time Threshold = 0.6. Frame Parameters; AVGCharge Pro-
cessor = False, MS2 Corr Processor = False, M/Z Min =
300, M/Z Max = 1,400, Frame time Width (min) = 5.0 min-
utes, Frame M/Z width = 0.02 da, Search Window % = 50%,
Retention Time Start = 5.0 min, Retention Time Stop = 110
min, Peak Intensity threshold = 50,000, Processor Modules
= Isotagger V1.1, PCA V1.0. Significance was calculated
within SIEVE using a standard T-test and results were fil-
tered for a minimum of two peptides identified per protein
(using the identification criteria stated in this method sec-
tion) with frames having a p value of less than 0.05.

Tandem mass-spectra from peptide features that are
considered differentially expressed across conditions are
then searched using SEQUEST against iCitrus (see
below). Search results were filtered for a False Discovery
rate of 5% employing a decoy search strategy utilizing a
reverse database [60].

Protein Identification and Validation for Spectral counting
Tandem mass-spectra were extracted by Bioworks-3.3.
Charge state de-convolution and de-isotoping were not
performed. All MS/MS samples were analyzed using X!
Tandem http://www.thegpm.org; version TORNADO
(2008.02.01.2)). X! Tandem was set up to search the
62,415 entries of iCitrus (see below) assuming the diges-
tion enzyme trypsin. X! Tandem was searched with a
fragment ion mass tolerance of 0.40 Da and a parent
ion tolerance of 25 ppm. Iodoacetamide derivative of
cysteine was specified in X! Tandem as a fixed modifica-
tion. Deamidation of asparagine, oxidation of methio-
nine, sulphone of methionine, tryptophan oxidation to
formylkynurenin of tryptophan and acetylation of the
N-terminus were specified in X! Tandem as variable
modifications. Different tandem MS programs were
used (SEQUEST for dMS and X!Tandem for Spectral
Counting) because of licensing restriction and limited
access to SEQUEST that would have generated signifi-
cant time delays in the data analysis. Nonetheless, the
use of SEQUEST or X!Tandem would have make little
or no difference. In addition, in this report we aim at
comparing overall methodology (i.e. dMS versus SC)
and not their individual components.
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Criteria for protein identification for Spectral Counting
Scaffold 2.06.00 (Proteome Software Inc., Portland, OR)
was used to validate MS/MS-based peptide and protein
identifications. Peptide identifications were accepted if
they could be established at greater than 80.0% probabil-
ity as specified by the Peptide Prophet algorithm [61].
Protein identifications were accepted if they could be
established at greater than 95.0% probability and con-
tained at least 2 identified peptides. Protein probabilities
were assigned by the Protein Prophet algorithm [77].
Proteins that contained similar peptides and could not
be differentiated based on MS/MS analysis alone were
grouped to satisfy the principles of parsimony.

Statistical Analysis for Spectral Counting

Unweighted Spectral counts for the identified proteins
obtained from the samples corresponding to two conse-
cutive growth seasons were exported from Scaffold and
analyzed using QSpec [58] for significance analysis. Pro-
teins were considered significantly different across sam-
ple conditions if QSpec reported a Bayes factor of > 10.
This corresponds to a false discovery rate (FDR) of
approximately 5%.

Proteomics Data Set
The data associated with this manuscript may be down-
loaded from ProteomeCommons.org Tranche using the
following hash:
Cf3G8KatEeCbDv2kV1Gnw4njaSYAR]JgmtyzYl
+5764Gsbb/M3LX+/001zcHnHK1GsOukuBM5Rk
+Q1t5hpial09pVPXKAAAAAAAAoLg==The hash may
be used to prove exactly what files were published as
part of this manuscript’s data set, and the hash may also
be used to check that the data has not changed since
publication.

Additional material

Additional file 1: iCitrus database file in FASTA format. Citrus
sequences from UC Riverside HarvEST:citrus (C46 assembly), NCBI/citrus/
unigenes and NCBI/citrus/proteins were used to creat iCitrus. Thedatasets
were merged and identical sequences were filtered for redundancy (the
longest sequences were kept). All sequences were blasted to TAIR, and
separately to nr sequences belonging to taxa within Viridiplantae, in
order to collect GO-term and descriptive annotations. The sequences are
listed according to iCitrus accessions numbers followed with their
HarvEST accession, NCBI\citrus\unigene accession or NCBN\Citrus\protein
accession, Arabidopsis best homolog, annotation and amino acids
sequence. Users can enter lists of citrus sequence ID's, which results in a
table of ranked hits from a blast search of the citrus sequences against
Arabidopsis or Viridiplantae sequences. ID's from 1 to 62415, representing
the collected accessions, can be entered in the iCitrus interface (Figure
1). Each citrus ID received its own section of the result table and each ID
(hits) to TAIR proteins is separated into two blocks, defined by the high
scoring pair wise (HSP)-to-query coverage cutoff that can be set on the
front page. All BLAST hits with e-values than 1E-4 are reported, and no
hits below that cutoff occurred for a particular sequence, an empty list is
returned. The TAIR ID (AGI number) and NCBI gi number of the
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Arabidopsis or Viridiplantae protein similar to the citrus sequence are
shown next, including links to TAIR and NCBI. Finally, GO annotations are
listed when available. The final column “Annotation” contains TAIR-
specific annotations that do not use the same terms as the Gene
Ontology, but are available for the TAIR proteins. The data can be
downloaded to any spreadsheet.

Additional file 2: Table S1. Conversion table into iCitrus. Conversion
table of HarvEST:Citrus, NCBI/Citrus/ESTs and NCBI/Citrus/Proteins
accessions into iCitrus accessions. A complete list of all iCitrus accessions
can be found in columns A (62,415 accessions). Column A consists of
accessions from three databases: (1) NCBI/Citrus/Unigenes (accessions are
numbered S###HH#) (2) HarvEST:Citrus ESTs (UCA6_###H#H#) (3) NCBI/Citrus/
Proteins (#####) and column B consist of the corresponding iCitrus ID's.
iCitrus 1D's organized in ascending order. A list of accessions, originated
from the three databases that were found to be clustered together is
shown in columns D-F. Column D consists of accessions that were found
to be clustered with other accessions and column E consists of
accessions that clustered with accessions in column D. Column F consists
of the corresponding iCitrus accessions of the clustered accessions
appeared in columns D and E. A list of accessions that are found in the
databases (NCBI and HarvEST:Citrus) but are shorter than 50 AA between
stop codons, are shown in column H. These sequences were taken out
of iCitrus database and cannot be found in the FASTA file (Additional
File 1). Fast conversion table between the different sources of sequences
can be found in columns L-O.

Additional file 3: Figure S1. Alignment and analysis of LC-MS/MS
runs. 10 replicate LC-MS/MS runs (5 per condition) aligned and analyzed
using SIEVE. Several examples for high accuracy RT-XIC pairs are shown.
(@) RT-XIC pair for early stage Il in blue and stage II, in red. (b) A peptide
significantly up-regulated in Blue, (c) a peptide that does not show a
significant expression difference, and (d) a peptide significantly up-
regulated in red.
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