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Abstract

Background: Mycophenolic acid (MPA) is widely used as a post transplantation medicine to prevent acute organ
rejection. In the present study we used proteomics approach to identify proteome alterations in human embryonic
kidney cells (HEK-293) after treatment with therapeutic dose of MPA. Following 72 hours MPA treatment, total
protein lysates were prepared, resolved by two dimensional gel electrophoresis and differentially expressed
proteins were identified by QTOF-MS/MS analysis. Expressional regulations of selected proteins were further
validated by real time PCR and Western blotting.

Results: The proliferation assay demonstrated that therapeutic MPA concentration causes a dose dependent
inhibition of HEK-293 cell proliferation. A significant apoptosis was observed after MPA treatment, as revealed by
caspase 3 activity. Proteome analysis showed a total of 12 protein spots exhibiting differential expression after
incubation with MPA, of which 7 proteins (complement component 1 Q subcomponent-binding protein, electron
transfer flavoprotein subunit beta, cytochrome b-c1 complex subunit, peroxiredoxin 1, thioredoxin domain-
containing protein 12, myosin regulatory light chain 2, and profilin 1) showed significant increase in their
expression. The expression of 5 proteins (protein SET, stathmin, 40S ribosomal protein S12, histone H2B type 1 A,
and histone H2B type 1-C/E/F/G/I) were down-regulated. MPA mainly altered the proteins associated with the
cytoskeleton (26%), chromatin structure/dynamics (17%) and energy production/conversion (17%). Both real time
PCR and Western blotting confirmed the regulation of myosin regulatory light chain 2 and peroxiredoxin 1 by MPA
treatment. Furthermore, HT-29 cells treated with MPA and total kidney cell lysate from MMF treated rats showed
similar increased expression of myosin regulatory light chain 2.

Conclusion: The emerging use of MPA in diverse pathophysiological conditions demands in-depth studies to
understand molecular basis of its therapeutic response. The present study identifies the myosin regulatory light
chain 2 and peroxiredoxin 1 along with 10 other proteins showing significant regulation by MPA. Further
characterization of these proteins may help to understand the diverse cellular effects of MPA in addition to its
immunosuppressive activity.
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Introduction
Mycophenolic acid (MPA) is a frequently used immuno-
suppressant for the prevention of acute rejection in
patients undergoing allogenic renal, cardiac, lung, and
liver transplantations [1,2]. MPA is a selective, reversible

and uncompetitive inhibitor of inosine monophosphate
dehydrogenase (IMPDH), a key regulatory enzyme in
the de novo pathway of purine synthesis. It exhibits
cytotoxic effects on most of the cell types, but exerts
greater effects on T and B lymphocytes, thus preventing
solid organ rejection [2]. IMPDH inhibition by clinically
relevant concentration of MPA results in guanine
nucleotide depletion which is associated with G1 cell
cycle arrest. MPA also triggers apoptosis by up-
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regulating pro-apoptotic proteins (p53, p21 and bax)
and down-regulating proteins that are important for cell
cycle progression, such as bcl-2, survivin p27 and c-myc
[3]. IMPDH type II is significantly over-expressed in
several tumor cells, for this reason IMPDH could be
considered as a potent target for anti-cancer therapy, as
well as immunosuppressive chemotherapy [4].
MPA and its metabolites effect most of the cellular

functions by influencing biological pathways, like apop-
tosis [5], immune associated signaling [6] and general
cell signaling pathways involving mitogen-activated pro-
tein kinases, extracellular-signal regulated kinases, c-Jun
N-terminal kinases, p53 and Rho-associated protein
kinase [5,7,8]. Collectively, MPA possesses anti-micro-
bial, anti-inflammatory, anti-fibrotic, pro-apoptotic [2],
anti-angiogenic, anti-cancerous [9] and anti-oxidant
activities [10]. Due to MPA diverse therapeutic activities
in the cell, it is also used for the treatment of dermato-
logical diseases, neuromuscular diseases and autoim-
mune disorders such as lupus [9,11]. Gastrointestinal
tract (GIT) complications i.e., diarrhoea, nausea, abdom-
inal pain, vomiting, anorexia, gastritis, intestinal ulcera-
tion and small intestinal villous atrophy are common
complication for some transplant patients on MPA ther-
apy. Other MPA associated adverse effects are anemia,
myelosuppression and risk of opportunistic infections
[12]. The exact molecular mechanism of MPA organ
toxicity is unknown, but possible mechanisms include

direct toxicity by its anti-proliferative effect, opportunis-
tic infections due to myelosuppression and toxicity, and
acyl MPA glucuronide (AcMPAG) proteins adduct for-
mation [12,13].
Here we use HEK-293 cell line to uncover cellular

protein response to the exposure of clinical dose of
MPA. In the present study we used a proteomics based
approach to resolve proteins of total cell lysates on two
dimensional electrophoresis (2-DE) gels following treat-
ment with DMSO and MPA. The differentially
expressed proteins were in-gel tryptic digested and iden-
tified by QTOF-MS/MS analysis. Several proteins were
identified with modified expression in response to MPA
treatment which might be helpful to broaden our under-
standing regarding the cellular effects of MPA.

Results
In the present study the alteration in the cellular pro-
teome by the MPA treatment was investigated using
HEK-293 as cell culture model. Incubation of HEK-293
cells with MPA followed a dose dependent inhibition of
cell proliferation (Figure 1). The IC50 concentration (7.5
μmol/L or 2.4 mg/L) of MPA was selected as standard
dose for further analysis, which is within the therapeutic
range (0.3 to 3.4 mg/L) [14]. Cells were treated with
MPA and DMSO (as vehicle) for 3 days, and total cell
lysates were prepared. Total protein extracts of MPA
and DMSO treated cells were separated by 2-DE using

Figure 1 Inhibition of HEK-293 cells proliferation by MPA treatment. The cell proliferation was determined after 72 hr of treatment with
different doses of MPA (0-100 μmol/L) using BrdU colorimetric based method. Results are shown as percentage of control (DMSO treated) and
represent four independent experiments.
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pH 3-10 linear IPG strips and visualized by silver stain.
The protein spots which showed ≥ ± 1.5 fold change (p
< 0.05 using Student’s t test) as compared to DMSO
treated controls were considered as differentially
expressed proteins. Statistical analysis showed that a
total of 12 proteins exhibited significantly altered
expression due to MPA treatment (Table 1). The altered
expression pattern of the HEK-293 proteins by MPA is
shown in Figure 2. Among 12 regulated proteins spot
under MPA treatment, 7 proteins were significantly up-
regulated and 5 proteins showed down-regulated expres-
sion. The up-regulated spots under MPA treatment
were identified as complement component 1Q subcom-
ponent binding protein (C1q), electron transfer flavopro-
tein subunit beta, cytochrome b-c1 complex subunit,
thioredoxin domain-containing protein 12, myosin regu-
latory light chain 2 (MLC2), peroxiredoxin1 (Prdx1) and
profilin 1. Five proteins, which showed down-regulated
expression, were identified as protein SET, stathmin,
40S ribosomal protein S12, histone H2B type 1-A, and
histone H2B type 1-C/E/F/G/I. A bar diagram, showing
relative abundance (% Vol), SD and statistical signifi-
cance of all the significantly regulated protein is pro-
vided as “Additional file 1 figure s1”. Figure 2 shows an
exemplary gel of DMSO (vehicle) and MPA with
marked regulated proteins. The extent of regulation in

protein expression with predicted and actual pI, as well
as molecular masses with their SwissProt accession
numbers are provided in Table 1 and MS/MS spectral
information is provided in the “Additional file 2 table
s1”. Functional classification of differentially regulated
proteins was done using KOGnitor, an online biological
function annotation tool [15]. The proteins altered by
MPA treatment belong to various categories i.e., cytos-
keleton (26%), chromatin structure/dynamics and energy
production/conversion (17% each) (Figure 3). Gels spot
diagram of two selected protein spots (MLC2 and
Prdx1) in 4 biological replicates are shown in Figure 4a.
To validate the 2-DE results, the expression of MLC2
and Prdx1 were confirmed by Western blotting and real
time PCR analysis. Expression of Prdx1 and MLC2 were
up-regulated at both transcriptional (Figure 4b) and pro-
tein level (Figure 4c). Specifically, MPA increased MLC2
protein (Mean fold: +1.78, p < 0.005, n = 4, Western
blotting) and mRNA expression (Mean fold: +2.25, p <
0.05, n = 4, real time PCR). Prdx1 expression was also
up-regulated, both at protein level (Mean fold: +2.73, p
< 0.005, n = 4) and mRNA level (Mean fold: +1.93, p <
0.05, n = 4). To check whether over-expression of
MLC2 following MPA treatment is only HEK-293 cells
specific, we determined MLC2 expression in total pro-
tein lysate prepared from kidney of MMF (pro-drug of

Table 1 Differentially regulated proteins by MPA in HEK-293 cells identified by mass spectrometry

Spot
No

Acc Mt/Mo

(kDa)
Score pIt/pIo Pep Protein name FunctionBy KOGnitor NCBI Expression

change (in
folds)

6 Q01105 33.4/37.0 154 4.23/4.14 3 Protein SET Replication, recombination and
repair

1.86*↓

9 Q07021 31.3/31.0 141 4.74/4.5 3 Complement component 1 Q
subcomponent-binding protein,

mitochondrial

Defense mechanisms 1.58*↑

14 P38117 27.8/25.5 181 8.24/9.18 6 Electron transfer flavoprotein subunit beta Energy production and
conversion

1.54*↑

15 P47985 29.6/25.0 112 8.51/7.081 6 Cytochrome b-c1 complex subunit Rieske,
mitochondrial

Energy production and
conversion

3.71**↑

18 Q06830 22.0/21.0 64 8. 27/8.14 2 Peroxiredoxin-1 Posttranslational modification,
protein turnover, chaperones

1.71**↑

22 P16949 17.2/15.8 56 5.76/6.32 3 Stathmin General function prediction only 1.50**↓

23 O95881 19.1/16.0 123 5.24/5.89 4 Thioredoxin domain-containing protein
12

Cytoskeleton 1.95*↑

24 O14950 19.7/16.0 195 4.71/5.32 4 Myosin regulatory light chain MRLC2 Cytoskeleton 3.41*↑

27 Q96A08 14.1/14.5 51 10.31/7.0 2 Histone H2B type 1-A Chromatin structure and
dynamics

1.90*↓

28 P62807 13.8/14.2 250 10.31/6.51 9 Histone H2B type 1-C/E/F/G/I Chromatin structure and
dynamics

1.58*↓

31 P25398 14.5/13.0 89 6.81/7.10 3 40 S ribosomal protein S12 Translation, ribosomal structure
and biogenesis

2.44*↓

34 P07737 15.0/13.5 142 8.44/9.07 6 Profilin-1 Cytoskeleton 1.51**↑

Acc: Accession number; Mt: theoretical molecular mass; Mo: observed molecular mass; pIt: theoretical isoelectric point; pIo: observed isoelectric point; pep:
number of peptides sequenced for identification; Score: Peptide mass fingerprint probability score as defined by Mascot (www.matrixscience.com). Individual ions
score > 42 indicate identity or extensive homology (p < 0.05); ↓: down-regulated; ↑ up-regulated; *p < 0.05, **p < 0.005. Molecular function determined from the
online protein reference database KOGnitor NCBI (http://www.ncbi.nlm.nih.gov/COG/grace/kognitor.html).
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MPA) treated rats (Figure 5a) and MPA treated HT-29
cells (Figure 5b). MLC2 expression was increased both
in kidney total protein lysate and HT-29 cells by (Mean
fold: +2.57, p < 0.005, n = 4) and (Mean fold: +1.95, p <
0.005, n = 4) respectively.
To demonstrate the effect of MPA on cell apoptosis, cas-
pase-3 activity (apoptosis marker) was determined using
a commercially available colorimetric assay. There was a
significant difference in caspase-3 activity between MPA
and DMSO treatment groups. MPA increased mean

absorbance by 2 fold (p < 0.005, n = 5) as compared to
DMSO treated cells. The results from caspase-3 assay
revealed that MPA treated cells exhibit more apoptosis
than cells treated with DMSO alone (Figure 6).

Discussion
We have used a 2-DE and mass spectrometric based
proteomics approach to develop a better understanding
of the influence of MPA therapeutic dose on the pro-
teome in HEK-293 cells. HEK-293 cells are widely used

Figure 2 Differential protein expression after incubation of HEK-293 cells with MPA. Total protein lysate from DMSO and MPA treated
cells was separated by 2-D gel electrophoresis and silver stained. Encircled differentially regulated proteins spots were identified using Q-TOF
MS/MS analysis. The figure shows exemplary 2-DE gels of DMSO and MPA treated HEK-293 cells.

Figure 3 Functional classification of regulated proteins. Biological functions were assigned using online KOGnitor NCBI (http://www.ncbi.nlm.
nih.gov/COG/grace/kognitor.html) software.
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cell culture model to study the mechanisms of drug
action, investigating drug targets and molecular aspects
of xenobiotic toxicity [16-18]. The regulated proteins
are found to be involved in diverse functions including
apoptosis and cell signaling mechanism. Apoptosis assay
showed that MPA has a pro-apoptotic role in HEK-293
cell line, a property which makes it a drug with potential
anti-tumor activities. MLC2 is an important myosin reg-
ulatory subunit, which regulates smooth muscle and
nonmuscle cells contractile activity [19]. MLC2 dis-
played an increased expression by MPA treatment. It is

already reported that MPA influences the cellular cytos-
keletal architecture via modulating mesangial actin reor-
ganization by activating actin polymerization and
inhibiting actin-depolymerization [20,21]. Phosphoryla-
tion of MLC2 causes significant changes in the physiolo-
gical dynamics of actin cytoskeleton, leading to barrier
defects in intestine [22], heart [23] and lungs [24]. How-
ever, it remains unclear if such cytoskeleton reorganiza-
tion in different organs may lead to a completely
different outcome, for example in intestine, diarrhoea is
associated with MPA therapy in some patients [12]. In

Figure 4 Differential expression of Prdx1 and MLC2 by MPA treatment. (a) Selected areas in the silver stained gels showing differential
expression of Prdx1 and MLC2. Delta 2D software was used for densitrometric analysis. The quantification of the level of expression (% volume)
in MPA treated cells and control cells (DMSO) is illustrated as a bar chart with the mean and SD of four separate experiments (*p < 0.05). (b)
Expression patterns of Prdx1 and MLC2 genes determined by real-time PCR. The relative expression of Prdx1 and MLC2 mRNA in the treated
samples was determined as a fold change compared with control samples using the comparative threshold cycle (CT) method (2-ΔΔCT) as
described in materials and methods part. Results shown are representative of four independent experiments. EF-2 was used to normalize the
values. The boxes represent range in variation statistics and the lines across the boxes represent the medians and the whiskers extend to the
highest and lowest values. Significance was calculated using the Mann-Whitney-U test (*p < 0.05) (c) Effect of MPA treatment on Prdx1 and
MLC2 protein expression. Protein extracts from MPA and DMSO treated cells were Western blotted using specific antibodies against Prdx1 and
MLC2. Densitometric analysis was done using Lab image version 2.71 software. b tubulin signal was used to control the equal protein load. The
experiments were repeated four times and error bars represent ± SD (**p < 0.005).
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the present study, we observed that MLC2 over-expres-
sion is not limited to a specific cell type (i.e. HEK-293)
but was reproducible in MMF treated rat kidney and in
MPA treated HT-29 cells protein lysates.

We observed an increase Prdx1 expression by MPA
treatment, both at gene and protein level.. Prdx1 is a
cytoplasmic stress-inducible anti-oxidant enzyme and a
major member of peroxiredoxin family [25]. Cells

Figure 5 Expression of MLC2 in MMF treated rat kidney lysate and HT-29 cells. Protein lysate was prepared and immunoblotted for MLC2
as described in method section. b tubulin was used to show equal protein load. Lab image software was used for quantification of protein
bands. Four independent experiments were performed and results presented as mean ± SD (**p < 0.005).

Figure 6 Measurement of MPA induced caspase-3 activity. Cells were treated with MPA and DMSO for 72 h. Protein extracts from each was
measured for caspase-3 activity. Five independent experiments were performed and results presented as mean absorbance ± SD (**p < 0.005).
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deficient in Prdx1 have increased sensitivity to oxidative
DNA damage [26]. Prdx1 along with its anti-oxidant
activity also possesses anti-inflammatory and anti-
atherogenic effects [27]. Oxidative stress contributes to
the pathophysiology of diverse clinical conditions,
including ischemia-reperfusion mediated post transplan-
tation graft injuries [28]. Prdx1 expression was also
reported to be up-regulated in human gingival fibro-
blasts by cyclosporine A (another commonly used
immunosuppressive drug) treatment [29]. MPA has pre-
viously been reported to diminish oxidative injuries and
induce anti-oxidant effects by preventing the production
of reactive oxygen species [10]. Furthermore, MPA
exerts lesser oxidative stress in renal transplant patients,
as compared to everolimus, cyclosporine and other cal-
cineurin inhibitors [30,31] 30,31. Prdx1 contribute to
the inhibition of tumorigenesis through PTEN/Akt path-
way [32] and its lower expression in the tumor indicated
high tumor proliferation, increased metastasis and could
be used as cancer biomarker [33]. Prdx1 is also involved
in ageing process as Prdx1-deficient mice have a shor-
tened lifespan and other malignancies [26]. Anti-tumor
drugs like histone deacetylase inhibitors (HDACIs) acti-
vate Prdx1, a tumor suppressor, which leads to apopto-
sis [34]. Previously it was observed that MPA also
inhibit histone deacetylases (HDACs) [35]. A further
investigation is needed to gain a deeper insight into the
Prdx1 regulation by MPA through HDACs inhibition
interaction with Prdx1 and its role in anti-tumor
activities.
Profilin 1, another cytoskeletal protein was up-regu-

lated by MPA treatment. Profilins are widely distributed
actin binding proteins [36], involved in actin filament
dynamics and several signaling pathways [37]. Profilin 1
over-expression has been reported to cause cell prolif-
eration inhibition, apoptosis induction and tumor sup-
pression [38]. Whether MPA via profilin over-
expression exerts extended anti-proliferative or anti-
tumor activities requires further investigation. Stathmin
was down regulated by MPA. Stathmin is a 19 kDa
cytoplasmic protein, which plays an important role in
the regulation of the microtubule cytoskeleton. Stathmin
regulates microtubule turnover by promoting microtu-
bules depolymerization and hydrolyze guanosine tripho-
sphate (GTP) from terminal tubulin, preventing
polymerization of tubulin heterodimers [39]. Previously,
our group demonstrated that AcMPAG alters tubulin
polymerization in a concentration-dependent manner
[40]. Furthermore, stathmin repression stabilizes micro-
tubules, inhibits angiogenesis [41] and suppress tumors
[42].
Thioredoxin domain-containing protein 12, also

known as endoplasmic reticulum resident protein 18
(ERp18) is ubiquitous in mammalian cells and acts as a

disulfide isomerase in the endoplasmic reticulum (ER).
It provides defense against oxidative stress, refolds disul-
fide-containing proteins, and regulates transcription fac-
tors [43]. ERp18 expressional up-regulation might cause
cell adoptivity in response to MPA induced ER stress.
SET protein was down-expressed by MPA. SET, a major
cellular serine threonine phosphatase is a potent inhibi-
tor of protein phosphatase 2A (PP2A) activity [44] and a
negative regulator of histone acetylation [45], thus
involved in cell growth and signaling cascades [46].
PP2A expression induced by down-regulation of SET
leads to the apoptosis and growth suppression [47],
MPA triggers nuclear stress and causes disruption of

the nucleus, leading to the activation of p53, which may
initiate cell cycle arrest and apoptosis [48]. In the pre-
sent study histone H2B was down-regulated by MPA
treatment, which is a major component of eukaryotic
nucleosome core. Post translational modification such as
methylation, acetylation, phosphorylation and ubiquiti-
nation of histone proteins alter transcription, DNA
replication, and DNA repair [49,50]. Previous data
showed that MPA mediated down-regulation of HDAC2
which might relate with potential epigenetic regulations
[35]. The microrarray analysis of mononuclear cells trea-
ted with AcMPAG (a metabolite of MPA) showed
down-regulation of histones in a previous study by our
group [51].
MPA affects ribosomal machinery by decreasing intra-

cellular guanine nucleotide level, depending on dosage
and cell type, resulting in global reduction of RNA
synthesis [48]. Other studies suggested that guanine
nucleotide depletion by IMPDH leads to a decrease in
pre-ribosomal RNA synthesis, nuclear disruption, and
p53 activation [52]. Disorganization of nuclear and ribo-
somal biogenesis is suggested to be an effective thera-
peutic target in cancers [53]. We observed a down-
regulation of 40 S ribosomal protein S12 by MPA,
which might be due to the altered ribosome biogenesis.
The proapoptotic stimuli including chemotherapeutic
agents induced a dose-dependent increase in the expres-
sion of the cytochrome c proteins [54]. In the present
study we also observed up-regulation of cytochrome b-c
I complex by MPA which suggests a possible role of
MPA in the regulation of energy metabolism. Comple-
ment component 1 Q subcomponent-binding protein
(C1q), a component of complement system involved in
the clearance of apoptotic cells was up-regulated by
MPA. C1q binds to surface blebs of apoptotic cells,
which follows subsequent phagocytosis [55]. C1q defi-
ciency leads to a significant decline in the clearance of
apoptotic cells in both C1q- and C4-deficient mice,
causing glomerulonephritis [56]. MPA causes cellular
apoptosis and cells might utilize C1q over-expression to
clear the apoptotic cells.
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Conclusion
This investigation identifies proteins related to diverse
cellular functions which altered their expression by
MPA treatment; many of which are reported for the
first time in this context. The expression of Prdx1
(involved in apoptosis) and MLC2 (protein important
for epithelial barrier integrity) were observed to be regu-
lated at RNA and protein level. Further investigations of
the regulated proteins will provide new insights into the
cellular pathways influenced by MPA therapy and could
help in more rational use of MPA in transplantation
medicine.

Methods
Reagents
Cell culture media (DMEM and MacCoy’s), fetal calf
serum (FCS), phosphate buffer saline (PBS), penicillin
and streptomycin were purchased from PAA Labora-
tories, Colbe, Germany. Urea, thiourea, dithiothreitol
(DTT), trypsin, triflouroacetic acid (TFA), sodium car-
bonate, ammonium bicarbonate, MPA and DMSO were
purchased from Sigma-Aldrich, Steiheim, Germany.
Acetonitril (ACN) was obtained from Promochem,
Wasel, Germany. CHAPS was obtained from Appli-
Chem, Darmstadt, Germany. Ampholytes, protein assay
kit and immobilised pH gradient strips (IPG strips) were
procured from Bio-Rad, Munich, Germany, while pro-
tease and phosphatase inhibitor cocktails were pur-
chased from Roche, Mannheim, Germany. Bromophenol
blue and trizma base were obtained from Carl Roth,
Karlsruhe, Germany. Sodium dodecyl sulfate (SDS) was
obtained from Serva, Heidelberg, Germany. Glycerin,
potassium ferricynaide and sodium thiosulfate were pur-
chased from Merck, Darmstadt, Germany and formic
acid from BASF, Ludwigshafen, Germany.

Cell culturing
HEK-293 and HT-29 cell lines were purchased from
German collection of microorganisms and cell cultures
(DSMZ), Braunschweig, Germany. The cells were grown
in 75 cm2 culture flasks (Sarstedt, Nuemberecht, Ger-
many) and maintained in culture at 37°C in 95% humid-
ity, 20% O2 and 5% CO2. DMEM and MacCoy’s media
supplemented with L-glutamine, 10% fetal calf serum,
100 U/mL penicillin, and 0.1 mg/mL streptomycin was
used to grow HEK-293 and HT-29 cells respectively.

Proliferation assay
Briefly, cells were grown in 96 well plates at a density of
3.5 × 104 cells/well at least 24 h prior to the start of the
experiment. The cells were then incubated with DMSO
(control) or 0 to 100 μmol/L MPA for a period of 72 h.
After completion of incubation, proliferation was deter-
mined using ELISA based BrdU cell assay (Roche

Diagnostics) according to manufacturer’s recommenda-
tions. Four independent experiments were performed.
IC50 values were calculated by a Grafit software package,
version 5 (Erithacus Software, London, UK).

Sample preparation for proteome analysis
The HEK-293 and HT-29 cells were grown for 24 h fol-
lowed by treatment with DMSO or MPA (7.5 μmol/L
and 10 μmol/L for HEK-293 and HT-29 respectively)
for 72 h. Cells were harvested by scraping and were
washed three times with ice cold PBS. After washing,
cells were pelleted down at 250 × g for 10 min and
lysed in a buffer containing 7 mol/L urea, 2 mol/L
thiourea, 4% w/v CHAPS, 2% ampholyte pH 3-10 and
1% DTT. The lysates were centrifuged and protein con-
tent was measured by Bradford assay [57] using Bio-Rad
protein reagent (Bio-Rad, Munich, Germany) according
to manufacturer’s instructions. Sample aliquots were
kept at -80°C until further use. Protein lysate was pre-
pared from 21 days MMF treated adult female Wistar
rat’s kidney according to the previously reported proto-
col [58] and were used for Westernblotting.

2-DE
The 2-DE was performed as described by Gorg et al
2000 [59] with some minor modifications. Protein sam-
ples of HEK-293 cell (110 μg) were mixed with rehydra-
tion buffer (7 mol/L urea, 2 mol/L thiourea, 4% CHAPS,
0.2% ampholyte [pH 3-10], and 0.2% DTT) containing
trace amount of bromophenol blue to a total volume of
350 μL. Samples were applied to linear IPG strips [pH
3-10], Bio- Rad) for 1 h and then covered with mineral
oil for passive rehydration overnight at room tempera-
ture. Iso-electric focusing (IEF) was performed in Pro-
tean IEF cell (Bio-Rad) with a program of 1 h at 100
volts, 1 h at 500 volts, 2 h at 1000 volts and 8000 volts
with a total of 32000 volts-h. For the second dimension
electrophoretic separation, focused strips were equili-
brated for 30 min at room temperature in a buffer con-
taining 50 mmol/L Tris-HCL [pH 8.8], 6 mol/L urea,
30% v/v glycerol, 2% SDS and 10 g/L DTT followed by
an identical incubation but replacing DTT with 40 g/L
iodoacetamide. The proteins in the equilibrated strips
were then resolved on the 12.5% SDS-PAGE in a Pro-
tean II chamber (Bio-Rad) at 100 V/4°C.

Protein visualization, densitometric analysis and in-gel
digestion
Gels were silver stained as described by Blum et al 1987
[60]. After fixation, gels were washed and sensitized.
The gels were then incubated in freshly prepared silver
nitrate solution (0.2% silver nitrate and 0.026% formal-
dehyde) for 20 min at room temperature followed by 3
times washes of 20 sec each in distilled water. Gels were
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placed in developing solution (6% sodium carbonate,
0.018526% formaldehyde and 6% sodium thiosulfate)
until standard marker stained completely and adequate
spots were visualized. Gels were scanned with a gel
Cano scan 8400 (Canon, Tokyo, Japan). Densitrometric
analysis was done by using Delta 2D software version
3.6 (Decodon GmbH, Gerifswald, Germany) [61]. Spot
intensities were first normalized and the relative inten-
sity of each spot was calculated by dividing the intensity
of each spot by the sum of all spots intensities on the
corresponding gel. Fold change, SD and Student’s t test
probability were calculated using Microsoft excel soft-
ware. Spots having at least 1.5 fold expressional changes
(p < 0.05) were considered statistically significant. Four
independent 2-DE experiments were performed. Differ-
entially regulated protein spots were excised from the
silver stained gel with a clean scalpel blade followed by
in-gel digestion according to the method adopted and
modified from Shevchenko et al [62]. Briefly, the gel
pieces were washed twice in 100 mmol/L ammonium
bicarbonate/acetonitrile (1:1, v/v) initially for 10 min
and then until all visible dye was removed. The gel
pieces were dried using vacuum centrifuge (UNIVAPO
150 H; uniEquip, Matinsried, Germany) followed by
reconstitution in the trypsin digestion solution (10 ng/
μL in 100 mmol/L ammonium bicarbonate) overnight at
37°C. After incubation the supernatant containing
digested peptides was transferred to a tube and 50 μL of
0.1% TFA was added followed by sonication for 30 min.
After sonication, the supernatant was pooled with the
previous one. Two further extractions were collected in
the same way using 0.1% TFA in 30% and then 60%
ACN. The pooled extracts of peptides were dried in
vacuum centrifuge and reconstituted in 0.1% formic
acid.

Q-TOF LC-MS/MS analysis of protein identification
The reconstituted peptide samples (1 μL) were intro-
duced onto μ-precolumn™ cartridge (C18 pepMap; 300
μm × 5 mm; 5 μm particle size) and further separated
through a C18 pepMap 100 nano- Series™ (75 μm × 15
cm; 3 μm particle size) analytical column (LC Packings,
Germering, Germany) using an CapLC autosampler
(Waters, Eschborn, Germany). The mobile phase con-
sisted of solution A (0.1% formic acid prepared in 5%
ACN) and solution B (0.1% formic acid prepared in 95%
ACN). The sample run time was set to 60 min and the
flow rate of the pump to 5 μL/min. The exponential
gradient was initiated at 5 min after loading from 10%
to 95% for the period of 50 min. Tip flow rate of 250
nL/min was achieved through a flow splitter. The eluted
peptides were injected into a Q-TOF Ultima Global
(Micromass, Manchester, UK) mass spectrometer
equipped with a nanoflow ESI Z-spray source in positive

ion mode. Data was acquired by MassLynx (v 4.0) soft-
ware and peak list (pkl file) was generated from acquired
MS/MS raw data using ProteinLynx Global Server bioin-
formatics tool (PLGS; v 2.2; Waters, Manchester, U.K.)
under the following settings; Electrospray, centroid 80%
with minimum peak width 4 channel, noise reduction
10%, Savitzky-Golay, MSMS, medium deisotoping with
3% threshold, no noise reduction and no smoothing.
The generated pkl files were searched using the online
MASCOT (http://www.matrixscience.com) algorithm
against the SwissProt data base release 15.5 (515203
sequence entries, 181334896 elements). The search cri-
teria was set as follows: enzyme, trypsin; allowance of
up to one missed cleavage peptide; mass tolerance ± 0.5
Da and MS/MS tolerance ± 0.5 Da; modifications of
cysteine carboamidomethylation and methionine oxida-
tion. Proteins were finally identified on the basis of two
or more peptides, whose ion scores exceeded the thresh-
old, P < 0.05, which indicated the 95% confidence level
for these matched peptides. To ensure accurate identifi-
cation, protein spots were digested from more than two
gels and analyzed with MS. Proteins were considered as
identified if the threshold was exceeded and the protein
spot possessed the correct molecular weight and pI
value of the corresponding spot on 2-DE.

Functional classification
Biological function annotations for all of the identified
proteins were done by KOGnitor (http://www.ncbi.nlm.
nih.gov/COG/grace/kognitor.html) [15].

Western blotting
Proteins were separated on 12.5% SDS-PAGE and
blotted onto PVDF membrane (ImmobilonP, Millipore)
using semidry Trans-Blot® SD cell system (Bio-Rad,
Munich, Germany) for 30 min at 15 V in a blotting buf-
fer (192 mmol/L glycine, 20% methanol, 25 mmol/L
Tris, pH 8.3). The membranes were blocked with 5%
(w/v) skimmed milk repared in TBS-T buffer (50 mmol/
L Tris-HCl [pH 7.5], 200 mmol/L NaCl, 0.05% Tween
20) for 1 h at room temperature and washed twice with
TBS-T buffer. The membranes were incubated with
1:1000 mouse anti Prdx1 antibody (Abcam, Cambridge,
MA), 1:1000 rabbit anti MLC2 (Cell Signaling Technol-
ogy, Inc., Danvers, MA) and 1:1000 mouse anti beta
tubulin (Biovender, Czech Republic) overnight at 4°C,
followed by washes with TBS-T buffer. Membranes
were further incubated with appropriate HRP-conju-
gated secondary antibodies for 1 h at room temperature.
The signals on the blots were detected by using ECL
system (GE Healthcare) according to manufacturer’s
instructions. Signal intensities from each Western blot
were quantified by using Lab Image software, version
2.71 (Leipzig, Germany). b tubulin was used as a loading
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control and at least four independent experiments were
performed.

RNA isolation and cDNA synthesis
RNA was extracted using Trizol reagent (Invitrogen,
Carlsbad, CA) according to manufacturer’s recommen-
dations. Briefly, cells were scraped, washed and then
homogenized in Trizol reagent. RNA was separated by
chloroform/isopropanol precipitation method. The con-
centration of RNA was determined by the GeneQuant II
RNA/DNA calculator (Pharmacia Biotech, Freiburg,
Germany). The RNA quality was verified at OD260/
OD280 nm ratios and subsequent electrophoretically on
1% agarose gels using ethidium bromide staining. The
cDNAs were synthesized from 2 μg total RNA in a 30
μL reaction mix containing 1 × reverse transcriptase
(RT) PCR buffer (10 mmol/L Tris-HCL [pH 8.3], 15
mmol/L KCl, 0.6 mmol/L MgCl2), 0.5 mmol/L of
dNTPs mix, 1 U/μL RNase inhibitor and 13.3 U/μL M-
MLV RT enzyme. The RT reaction was performed in a
thermocycler (Biometra, Goettingen, Germany) at 42°C
for 1 h. cDNA was stored at -70°C until use.

Real-time PCR
Relative quantitative PCR were carried out using the
LightCycler instrument (Roche Diagnostic Systems, NJ,
USA). The primers for the human Prdx1 (forward 5’-
TGGGGTCTTAAAGGCTGATG-3’ and reverse 5’-
TCCCCATGTTTGTCAGTGAA -3’), human MLC2
(forward 5’- CAGGAGTTCAAAGAGGCCTTCAAC -3’
and reverse 5’- CTGTACAGCTCATCCACTTCCTCA
-3’) and elongation factor 2 (forward 5’-GACATCAC-
CAAGGGTGTGCAG-3’ and reverse 5’-GCGGTCAG-
CACACTGGCATA-3) were designed by the Primer3
software (http://frodo.wi.mit.edu) [63]. The total volume
of 20 μL PCR contained 1 μL of cDNA solution, 2 μL of
10 × PCR buffer (Invitrogen), 2 μL Syber green, 1 μL
BSA, 1 μL DMSO, 0.25 μL of each primer (Eurofins
MWG-Biotech, Ebersberg, Germany), 2.0 mmol/L
MgCl2, 0.2 mmol/L dNTPs mix and 0.15 U/μL PAN
Script DNA polymerase (PAN Biotech, Aidenbach, Ger-
many). The amplification conditions for Prdx1 and
MLC2 were: initial denaturation 30 sec at 95°C and
repeated cycles of denaturation (95°C for 1 sec), primer
annealing (55°C for 5 sec), elongation (72°C for 10 sec),
and fluorescence reading at 82°C. For elongation factor
2 (EF-2) PCR conditions were similar to Prdx1 except
for primer fluorescence reading which was measured at
88°C. The relative expression of Prdx1 and MLC2
mRNA in the treated samples was determined as a fold
increase compared with control samples using the com-
parative threshold cycle (CT) method 2-ΔΔ C

T(ΔΔCT =
ΔC target genes - ΔC reference gene) [64]. EF-2 was
used as the internal control gene. Experiments were

performed four times. Statistical difference (p value) in
mRNA expression level between MPA and DMSO sam-
ples were calculated using the Mann-Whitney U test.
The PCR product was run on a 1% ethidium bromide-
agarose gel to confirm the presence of desired specific
amplified product.

Apoptosis assay
The caspase 3 activity was measured using CaspACE™
Assay kit (Promega Corporation, WI, USA) according to
the manufacturer’s protocol. Cells were treated with
DMSO and MPA for 72 h, harvested and briefly sus-
pended in lysis buffer. Proteins were extracted and
quantified by Bradford method [57]. Briefly, 70 μg of
protein lysate were mixed with reaction mixtures con-
taining colorimetric substrate peptides specific for cas-
pase 3 (DEVD-pNA) and then incubated at room
temperature for overnight. The absorbance of the
cleaved p-nitroanilide from the substrate DEVD-pNA
was measured at 405 nm using EL808 microplate reader
(Bio-Tek instruments, VT, USA). Five independent
experiments were performed.

Additional material

Additional file 1: A graphical representation of relative abundance
(% volume) of all differentially regulated proteins. Relative
abundance of the proteins differentially expressed in DMSO and MPA
treated HEK-293 cells. Results shown as mean of four independent
experiments (*p < 0.05 or **p < 0.005).

Additional file 2: MS/MS analysis table of all differentially regulated
proteins. Accession number, sequence coverage, score and MS/MS
spectra of identified proteins.
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