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Proteomic and transcriptomic analysis of heart
failure due to volume overload in a rat aorto-
caval fistula model provides support for new
potential therapeutic targets - monoamine
oxidase A and transglutaminase 2
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Abstract

Background: Chronic hemodynamic overloading leads to heart failure (HF) due to incompletely understood
mechanisms. To gain deeper insight into the molecular pathophysiology of volume overload-induced HF and to
identify potential markers and targets for novel therapies, we performed proteomic and mRNA expression analysis
comparing myocardium from Wistar rats with HF induced by a chronic aorto-caval fistula (ACF) and sham-operated
rats harvested at the advanced, decompensated stage of HF.

Methods: We analyzed control and failing myocardium employing iTRAQ labeling, two-dimensional peptide
separation combining peptide IEF and nano-HPLC with MALDI-MS/MS. For the transcriptomic analysis we
employed lllumina RatRef-12v1 Expression BeadChip.

Results: In the proteomic analysis we identified 2030 myocardial proteins, of which 66 proteins were differentially
expressed. The mRNA expression analysis identified 851 differentially expressed mRNAs.

Conclusions: The differentially expressed proteins confirm a switch in the substrate preference from fatty acids to
other sources in the failing heart. Failing hearts showed downregulation of the major calcium transporters SERCA2

inhibitors in future HF therapy.

and ryanodine receptor 2 and altered expression of creatine kinases. Decreased expression of two NADPH
producing proteins suggests a decreased redox reserve. Overexpression of annexins supports their possible
potential as HF biomarkers. Most importantly, among the most up-regulated proteins in ACF hearts were
monoamine oxidase A and transglutaminase 2 that are both potential attractive targets of low molecular weight
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Background

Heart failure (HF) is a major cause of human morbidity
and mortality with increasing prevalence worldwide,
affecting 2-4% of the adult European population [1]. HF
is a complex syndrome, resulting from an impaired abil-
ity of the diseased heart to maintain adequate effective

* Correspondence: jpetr@lf1.cuni.cz

'Institute of Pathological Physiology, First Faculty of Medicine, Charles
University, Prague, Czech Republic

Full list of author information is available at the end of the article

( BioMVed Central

cardiac output [2]. Typical signs and symptoms of
chronic HF are shortness of breath, cough, accumulation
of fluids in the lungs and other tissues, fatigue, limita-
tions on physical activity and arrhythmia [2]. The prog-
nosis for affected individuals is poor and 50% of chronic
HF patients die within 4 years of the initial diagnosis
[1]. Despite substantial progress in deciphering indivi-
dual processes involved in the initiation and gradual
progression of HF [3], our understanding of the underly-
ing molecular causes of cardiomyocyte dysfunction is
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still very limited. The molecular phenotype of heart fail-
ure has been associated with the altered expression of
proteins involved in energy metabolism, membrane exci-
tation, calcium-mediated excitation-contraction cou-
pling, force transduction and with myofilament
contraction or relaxation [3]. Studies of the molecular
mechanisms of HF in humans are undermined by multi-
factor etiology of cardiac dysfunction, by confounding
co-morbid conditions and also by a lack of appropriate
healthy controls. These obstacles can be avoided in
experimental animal models. In rodents, experimental
HF is most often induced by myocardial infarction (liga-
tion of the proximal left coronary artery) or by pressure
overload (banding of the proximal aorta). As recently
demonstrated the molecular responses to volume and
pressure overload appear to differ [4].

HF induced by chronic volume overload has been stu-
died less, despite such overload due to valve insuffi-
ciency being relatively common among HF patients [5].
Volume overload due to a surgically created aorto-caval
fistula (ACF) in rats is a well defined model of chronic
HF [6-8], which mimics the gradual transition of asymp-
tomatic cardiac hypertrophy into symptomatic HF. The
creation of an ACF leads to increased cardiac output
and eccentric ventricular hypertrophy that remains
asymptomatic for 8-10 weeks. Because most of cardiac
output is shunted into the inferior vena cava, the effec-
tive cardiac output is reduced. leading to renal hypoper-
fusion [7], neurohumoral activation, and sodium/water
retention [8]. Elevated cardiac filling pressures further
contribute to cardiac overload [9-11]. By these mechan-
isms, HF gradually develops [8].

To better elucidate the molecular pathophysiology of
HF due to ACF, and to identify potential molecular tar-
gets for novel therapies, we performed a proteomic ana-
lysis of the left ventricle myocardium from ACF animals
with signs of HF (150 days after fistula creation) and
control (sham-operated) rats. We used a shot-gun
approach that combines iTRAQ labeling chemistry [12]
with two-dimensional separation of peptides by isoelec-
tric focusing on immobilized pH gradients (IEF-IPG)
[13] followed by nano-HPLC and MALDI mass spectro-
metry. The myocardial samples were also subjected to
mRNA microarray expression analysis.

Materials and methods

The chronic HF model

HF due to volume overload was induced in male Wis-
tar rats (300-350 g) by creating an aorto-caval fistula
(ACF) using a 1.2 mm needle from laparotomy under
general anesthesia, as described previously [6,7]. Con-
trol sham-operated animals underwent the same proce-
dure, but without creating an ACF. The animals were
kept on a 12/12-hour light/dark cycle, and fed a
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normal salt/protein diet (0.45% NaCl, 19-21% protein,
SEMED, CR). The investigation conformed to the NIH
Guide for the care and use of laboratory animals (NIH
Publication No. 85-23, 1996), Animal protection laws
of the Czech Republic (311/1997) and was approved by
the Ethics Committee of IKEM (305/09/1390 from 25.
March 2008).

Echocardiography and hemodynamics

Examinations were performed under general anesthesia
(ketamine+midazolam mixture) at the study end (150
days after ACF creation) prior to harvesting of heart tis-
sue. Echocardiography was performed with a 10 MHz
probe (Vivid System 5, GE, USA). End-systolic and end-
diastolic left ventricle (LV) volumes were derived by the
cubic equation and stroke volume as their difference.
Hemodynamics was measured with a 2F micro-man-
ometer catheter (Millar Instruments) inserted into the
aorta and LV via the carotid artery, connected to a
Powerlab 8 platform for off-line analysis with LabChart
software (ADInstruments, Germany). The presence of
ACF was verified by laparotomy and the animals were
killed by exsanguination. After removal, hearts were
immediately perfused with ice-cold St. Thomas cardio-
plegic solution administered into the aortic root. The
organs were weighted and normalized to body weight.

Morphological examination

Perfused hearts were fixed with 4% paraformaldehyde in
phosphate buffer saline (PBS). After 24 h of immersion
in the same fixative, the hearts were rinsed in PBS and
processed through ascending series of saccharose prior
to embedding into Tissue-Tek OCT medium. The
blocks were then cut on cryomicrotome at 12 micro-
meters thickness. Guide series were stained by hematox-
ylin-eosin with Alcian blue. Sister sections were then
stained with Picrosirius Red. The slides were finally
washed with distilled water and dehydrated in ascending
ethanol series, cleared in xylene, and mounted in Depex
medium. Observation and photography were performed
in transmitted and polarized light on an Olympus BX51
compound microscope.

Myocardial sample preparation

Samples of mid-ventricular anterior free LV wall tissue
were immediately harvested into liquid nitrogen and
stored at -80°C until analysis. Frozen samples (ACF, n =
6 and controls, n = 6) were pulverized under liquid
nitrogen and the samples were sub-pooled according to
the following scheme: ACF1 (ACF rats #1,3,5), ACF2
(ACF rats #2,4,6), Sham1 (sham-operated rats #1,3,5),
Sham2 (sham-operated rats #2,4,6). The pooled samples
(10 mg) were extracted with 1 mL of NHT buffer (140
mM NaCl, 10 mM Hepes, 1.5% Triton X-100, pH 7.4)



Petrak et al. Proteome Science 2011, 9:69
http://www.proteomesci.com/content/9/1/69

for 15 min on ice. Insoluble material was sedimented at
15 000 x g for 15 min and the protein concentration of
the cleared supernatant was determined by the Bradford
assay (Bio-Rad, CA). A 100 pg aliquot from each sample
was precipitated overnight in cold acetone (-20°C). Pre-
cipitated proteins were sedimented at 15 000 x g at 4°C
for 15 min.

Protein digestion and iTRAQ labeling

Extracted and acetone-precipitated myocardial samples
were reduced, alkylated, digested with trypsin and
labeled with 114-117 iTRAQ chemistry according to the
manufacturer’s instructions (Applied Biosystems, UK).
Labeling was performed as follows: “114” - ACF1, “115”
- ACF2, “116” - Shaml1, “117” - Sham2. Labeled samples
114-117 were then combined and the volume of the
final sample was reduced to 40 pL in a SpeedVac Con-
centrator (Eppendorf, CR). In total, three independent
analyses A, B and C of the ACF1, ACF2, Sham1 and
Sham?2 samples were performed including extraction,
digestion, labeling, separation and MS analysis.

IEF-IPG of peptides, extraction

Isoelectric focusing was performed on a Protean IEF cell
(Bio-Rad, CA, USA) using 24 cm IPG strips (pH 4-7, Bio-
Rad). Strips were rehydrated overnight in 450 pL of
iTRAQ-labeled peptide mixture diluted with rehydration
buffer (7 M urea, 2 M thiourea, 4% CHAPS, 60 mM
DTT, 1% ampholytes and 0.002% bromophenol blue).
IEF was carried out for 73 kVhr with maximum voltage
not exceeding 6 kV, current limited to 50 pA per strip
and temperature set to 20°C. After focusing, strips were
briefly washed in water, cut into 32 pieces and peptides
were extracted from individual strip pieces into 150 pL of
80% acetonitrile with 0.5% trifluoroacetic acid, for one
hour at room temperature. The volume of all fractions
was reduced to 5-10 pL by evaporation in the SpeedVac
Concentrator and fractions were stored at -80°C.

LC-MALDI

LC-MALDI analyses were performed on an Ultimate
3000 HPLC system (Dionex, Sunnyvale, USA) coupled
to a Probot micro-fraction collector (Dionex). Extracted
post-1IEF fractions were loaded onto a PepMap 100 C18
RP column (3 pm particle size, 15 cm long, 75 pum inter-
nal diameter; Dionex) and separated by a gradient of 3%
(v/v) acetonitrile, 0.1% (v/v) trifluoroacetic acid to 44%
(v/v) acetonitrile, 0.1% (v/v) trifluoroacetic acid over a
period of 113 min and from 44% to 80% ACN over the
next 7 min. The flow rate was set to 300 nL/min. The
eluate was mixed 1:3 with matrix solution (2 mg/mL o-
cyano-4-hydroxycinnamic acid in 80% ACN) by the Pro-
bot micro-fraction collector prior to spotting onto a
MALDI target (5 spots per minute). Spectra were
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acquired on a 4800 Plus MALDI TOF/TOF analyzer
(AB Sciex) equipped with a Nd:YAG laser (355 nm, fir-
ing rate 200 Hz). All spots were first measured in MS
mode from m/z 800 to 4,000 and then up to 15 stron-
gest precursors were selected for MS/MS analysis which
was performed with 1 kV collision energy and a colli-
sion cell operating pressure of 10 Torr. Tandem mass
spectra were processed with a 4000 Series Explorer with
subtract baseline enabled (peak width 50), Gaussian
smoothing enabled (filter width 5), minimum signal to
noise 8, local noise window width 250 m/z, minimum
peak width at full width half max 2.9 bins, cluster area
signal to noise optimization enabled (threshold 15), and
flag monoisotopic peaks enabled.

Proteomic data analysis

Mass spectrometry data from all three parallel analyses
A, B and C were merged and processed as a single data-
set. Protein identification and quantitation were per-
formed using Protein Pilot 3.0 (AB Sciex). MS/MS
spectra were searched against the Rattus norvegicus
sequences assembly downloaded from GenBank (http://
www.ncbi.nlm.nih.gov/protein, 110 358 sequences, as of
06-Jan-2010) with the following settings: Trypsin diges-
tion (semitryptic peptides allowed), methyl methanethio-
sulfonate modification of cysteines, iTRAQ 4-plex
labeled peptides, instrument 4800, no special factors,
default iTRAQ isotope correction settings, quantifica-
tion, bias correction, background correction, biological
modifications and thorough ID parameters selected.
Probabilities of modifications were not altered. The
detected protein threshold (unused protein score and
confidence of results) was set to 2.0 and 99.0% and false
discovery rate analysis was enabled. Proteins sharing a
set of peptides were grouped automatically with the
default Pro Group™ Algorithm. Ratios of iTRAQ were
calculated with default Protein Pilot setting, Protein fold
change (iTRAQ ratio for an individual protein) was cal-
culated automatically by the Protein Pilot software as a
weighted average of Log iTRAQ ratios determined for
individual peptides belonging to the particular protein
after background subtraction.

To estimate the false discovery rate (FDR) a decoy
database search was performed. For each protein ratio
the Protein Pilot reported the p-value and EF (error fac-
tor). To be considered as differentially expressed, indivi-
dual proteins had to fulfill the following statistical
criteria: p value<0.05, EF<2 and average iTRAQ
ratio>1.5. In our experimental iTRAQ labeling scheme
("114” - ACF1, “115” - ACF2, “116” - Shaml, “117” -
Sham2) a protein was considered differentially expressed
only when the all three parameters were reached for all
four ACF/Sham protein iTRAQ ratios (i.e for all ratios
116/115, 116/114, 117/115 and 117/114). The fold-
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change of differentially expressed proteins was calcu-
lated as the average value from the protein iTRAQ
ratios reported by Protein Pilot.

Western blotting

Myocardial protein samples (20 pg) were separated on
10 or 12% SDS-PAGE minigels in Tris-Glycine buffer.
Electrophoresis was performed at a constant voltage 90
V. Proteins were then transferred to PVDF membranes
(Milipore, MA, USA) in semi-dry blotter (Hoeffer,
Canada) at 0.8 mA/cm? of membrane. Membranes were
incubated in blocking buffer (phosphate buffer saline
(Invitrogen, CA) and 0.1% TWEEN 20 (Sigma-Aldrich))
for 2 hours. Primary antibodies raised against MAO-A
(1:300), TGM?2 (1:400), HADHA (1:500), from Santa
Cruz Biotechnology, CA, USA and GAPDH (1: 330000)
from Sigma) were used. After thorough washing in the
blocking buffer, secondary horseradish peroxidase-con-
jugated antibody (1:10 000, Santa Cruz Biotechnology)
was added to membrane for one hour. Signal was
detected using Western Blotting Luminol Reagent
(Santa Cruz Biotechnology).

mRNA expression analysis

Samples of LV tissue (n = 6 in each group) were imme-
diately harvested into RNA preserving solution (RNA-
Later, Ambiogen, USA). Total RNA was isolated
(RNeasy-MicroKit, Qiagen, USA), checked for integrity,
amplified, and hybridized on an Illumina RatRef-12v1
Expression BeadChip (Illumina, USA). The raw data
were analyzed and processed using the beadarray pack-
age of the Bioconductor, as previously described [14].
Analysis of differential expression was performed with
the Limmapackage [15] and annotated against the
RatRef 12_V1_0_ R3_11222119_A.bgx maniphest (Illu-
mina, USA). The cut-off level for differential regulation
was set to the fold change [1.5 or \0.67 with Storey q
\0.05]. The data are MIAME-compliant and are depos-
ited in the ArrayExpress database (accession #: E-
MTAB-190).

Results and Discussion

We prepared cohorts of rats with an aorto-caval fistula
(ACF) and sham-operated control animals. We deter-
mined functional and morphological changes in the fail-
ing ACF myocardium and performed differential
proteomic and mRNA expression analysis of control
and failing ACF myocardium.

Cardiac morphometry and function

Rats with ACF had reached a similar body size as sham-
operated controls and most of ACF animals showed
clinical signs of HF such as piloerection, lethargy and
difficult breathing 150 days after ACF creation.
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Compared to controls, ACF animals had markedly
increased heart size (Figure 1A) and weights (5.29 +
0.18 vs. 2.80 + 0.12 g/100 g of body weight, p < 0.05)
and increased lung weights indicating pulmonary con-
gestion (Table 1). Echocardiography confirmed the
enlargement of both ventricles and reduced fractional
shortening of the left ventricle. These observations are
compatible with incipient contractile dysfunction in
ACEF. Invasive hemodynamics showed increased end-dia-
stolic LV (left ventricle) pressure also indicative of
decompensated HF (Table 1). There was no marked
fibrosis observed in ACF hearts (Figure 1B, C), in agree-
ment with a previous report [16].

Proteomic and transcriptomic analysis

Six male rats with ACF and six sham-operated animals
were included into our proteomic analysis and processed
in two sub-pooled samples per group. Three

sham AC

Figure 1 Morphology of sham and ACF rat hearts 150 day
after ACF creation. A) Transversal section of the heart illustrates
marked biventricular enlargement in the ACF animal compared to
control sham-operated rats. B,C) Picrosirius Red staining in
transverse sections, observed in polarized light, detected sparse
mature collagen fibers (in red) well aligned with the myocyte
bundles in the circular layer of the left ventricle (B). The amount of
collagen was consistently higher in the right ventricle (C), but no
difference between sham and ACF hearts was apparent. Green
staining is due to erythrocytes, contractile proteins, or immature
collagen fibrils. Very little green was observed at the edges of the
collagen fibers, representing physiological protein turnover rather
than tissue remodeling, with no difference between sham and ACF.
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Table 1 Morphometric, hemodynamic and
echocardiographic characteristics of cardiac function 150
days after ACF

Sham ACF

Morphometry

Body weight, g 592 + 209 586 + 234

Heart weight/BW, g/100 g 280 £ 012 529+018*

Lung Weight/BW, g/100 g 330+ 016 423 +0.19*
Hemodynamics

Heart rate, s/ 3449+ 3601 + 108

133

Peak LV pressure, mmHg 129 £ 7.11 120 £ 3.96

End-diastolic LV pressure, mmHg 6.7 +084 121 +066*
Echocardiography

LV diastolic diameter, mm 6.08 =040 10.20 + 048

*

LV systolic diameter, mm 195 + 042 547 +042 *

LV Fractional shortening, % 69.2 £ 500 46.7 +246*

LV anterior wall diastolic thickness, 230+ 008 233 +009

mm

LV posterior wall diastolic thickness, 233 +007 231 +0.09

mm

RV diastolic diameter, mm 285 +0.18 507 029 *

n = 10/group. Data are mean + SE.
BW: Body weight, ACF: aorto-caval fistula group, LV: left ventricle, RV: right
ventricle.

* significantly different (p < 0.05) than sham-operated animals.

independent labeling and separation experiments A, B
and C were performed, resulting in a total 168 LC-runs,
collecting over 110,000 MS/MS spectra. Mass spectro-
metry data from all three parallel analyses were merged
and processed as a single dataset by Protein Pilot soft-
ware. At high confidence (unused protein score 2.0 and
confidence 99%) we identified 2030 individual proteins.
For the expression analysis we considered only those
proteins that were identified with at least two peptides,
each peptide with at least 95% confidence. That reduced
the number of identified proteins to 1446 with a false
discovery rate (FDR) of only 0.48%. Based on the pro-
teomic analysis (table 2), sixty six proteins were differen-
tially expressed (p value<0.05, average iTRAQ ratio>1.5)

Transcriptomic analysis was performed using Illumina
chips containing 23,401 rat genes. 16,206 transcripts
were tested for differential expression, with 851 being
differentially expressed (q-value<0.05). Complete mRNA
expression data are deposited in the ArrayExpress data-
base (accession #: E-MTAB-190).

Table 2 lists the 66 differentially expressed proteins,
along with their respective mRNA expression data.
Twenty nine of these proteins were differentially
expressed with at least a 1.5-fold change at the mRNA
level. Eighteen mRNAs showed less pronounced differ-
ential expression but with a trend corresponding with
the respective proteins (i.e. up- or down-regulation).
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Three proteins were not represented on the array, and
the expression of 16 mRNAs out of 66 was not altered.

The list of these 66 differentially expressed proteins
including complete iTRAQ and mRNA statistics is avail-
able as Additional file 1, examples of 3 peptides used for
their identification are as Additional file 2. All other
proteins identified in our proteomic analysis are listed
in Additional file 3.

We further verified our results by western-blotting
analysis of three proteins with potential therapeutic rele-
vance - monoamine-oxidase A (MAO-A), transglutami-
nase 2 (TGM2) and a key protein of fatty acid beta
oxidation - the alpha-subunit of mitochondrial trifunc-
tional enzyme (HADHA) (Figure 2). The results confirm
the upregulation of MAO-A and TGM2 and down-regu-
lation of HADHA identified by proteomics and
transcriptomics.

Molecular changes in the failing myocardium

Although contractile function of the heart appears to
remain relatively preserved at this stage of HF, our pro-
teomic analysis confirmed characteristic molecular fea-
tures of HF such as profound changes in heart
energetics and metabolism - namely the switch of sub-
strate preference from fatty acids to other substrates are
the hallmark of HF [17,18]. The largest group of differ-
entially regulated proteins in ACF, representing approxi-
mately half of the differentially expressed proteins, is
associated with energetic substrate metabolism (Table
2). We note the few cases where mRNA expression did
not mimic protein changes, or was not present on
micro array chips.

Enzymes of fatty acid oxidation and electron transport
chain
The most obvious, but not unexpected, alteration in the
failing myocardium was the down-regulation of most
key proteins involved in the B-oxidation of fatty acids
(FA). The depressed expression or activity of individual
enzymes involved in FA oxidation has been previously
demonstrated in advanced HF patients and in most HF
models [reviewed in [17] and [18]]. Attenuated myocar-
dial oxidation of palmitate has recently been demon-
strated in the same HF model by our group [19].
However, we note that net lipid oxidation can be
increased in diabetic cardiac hypertrophy models [20]
We found carnitine O-palmitoyltransferase 2, respon-
sible for the transport of FA across the inner mitochon-
drial membrane, to be downregulated. The key protein
of beta oxidation the mitochondrial trifunctional protein
was downregulated (both HADHA and HADHB subu-
nits) as was Acyl-CoA dehydrogenase (3 forms with dif-
ferent FA chain length specificity). Additionally, 3-
2trans-enoyl-CoA isomerase that is responsible for the
catabolism of unsaturated FA and Acyl-CoA thioesterase
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Table 2 Proteins differentially expressed in hearts of ACF rats.
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Proteins downregulated in ACF

Peptides (95% Seq. Accession Protein name Protein Fold-change mRNA fold-
confidence) Cov. (iTRAQ ratio) change
53 54 gi259435950 Long-chain-fatty-acid-CoA ligase 1 0.23 NA
17 25 gi|59797483 Carnitine O-acetyltransferase 0.24 0.52
124 66.1  gil189083744 Sarcomeric mitochondrial creatine kinase 0.24 1.05
42 63 i|54035288 Enolase 3, beta 0.26 023
26 52 gi|57333 3-2 trans-enoyl-CoA isomerase 0.27 0.54
40 49 gil60688124  Trifunctional enzyme subunit alpha, mitochondrial 03 0.54
(HADHA)
24 35 gi|31077132 Histidine rich calcium binding protein 0.31 0.61
9 37 gi[1906812 Inducible carbonyl reductase 032 045
49 65 gi56541110  Acyl-Coenzyme A dehydrogenase, very long chain 033 0.59
28 45 gi|510110 Trifunctional enzyme subunit beta, mitochondrial 033 0.56
(HADHB)
4 17 gil66910891 Glutamic-pyruvate transaminase (alanine 0.34 0.38
aminotransferase)
113 53 gi|57303 Sarcoplasmic reticulum 2+-Ca-ATPase (SERCA2) 0.35 1.0
40 56.8  gi|149042663 Sarcalumenin 0.36 0.91
20 41.1 gi|77993368 Acyl-CoA synthetase family member 2 precursor 0.39 NA
120 743 qi|6978661 Muscle creatine kinase 04 0.69
195 758  gil83300587 ATP synthase subunit alpha, mitochondrial; 04 0.71
120 71 gi|62079055 Isocitrate dehydrogenase 2 (NADP+) 041 0.62
30 50 gi|7387725  Medium and short chain L-3-hydroxyacyl-coenzyme A 043 037
dehydrogenase
18 475 gi|51260066  Propionyl coenzyme A carboxylase, beta polypeptide 043 0.84
19 39 gil6166586 Acyl-coenzyme A thioesterase 2 044 0.54
24 426 gi[149050263 Propionyl-CoA carboxylase alpha chain 044 091
35 40.7 gi|6978543 Na+/K+ -ATPase alpha 1 subunit precursor 045 1.1
34 64 gi|56929 Pyruvate kinase M1/M2 046 06
16 37 qi|62825891 Phosphofructokinase, muscle 046 05
42 688  gi[57527204 Electron-transfer-flavoprotein, alpha polypeptide 046 0.69
10 30 gi[149062241 LRP16 protein 047 0.38
35 479 gi|92090591 Glutamate dehydrogenase 1 047 0.84
13 43 gil6981396 Protein kinase, CAMP dependent regulatory, type |, 047 1.0
alpha
63 37 qgil61557127 Nicotinamide nucleotide transhydrogenase 048 067
111 69.1 gi|6978431 Long-chain acyl-CoA dehydrogenase precursor 049 0.84
31 49 gi|48734846  Acyl-Coenzyme A dehydrogenase, C-2 to C-3 short 0.53 0.58
chain
64 445 gi|81883712 2-oxoglutarate dehydrogenase E1 component 0.53 0.69
48 67  gi[149027156 Acetyl-Coenzyme A acyltransferase 2 0.54 061
45 259  gi[189181710 Ryanodine receptor 2, cardiac 0.58 0.79
30 37 gi|81871846 Leucine-rich PPR motif-containing protein, 061 0.66
mitochondrial
33 45 gi|6978705 Carnitine O-palmitoyltransferase precursor 061 0.58
Proteins upregulated in ACF
Peptides (95% Seq. Accession Protein name Protein Fold-change mRNA fold-
confidence) Cov. (iTRAQ ratio) change

44 55 gi|48425083 Monoamine Oxidase A 4.06 1.93
10 18 gi|55249666 Cadherin 13 340 215
19 34 gi|5326787 Transglutaminase 2 3.07 1.93
24 61 gi|94400790 Heat shock protein 1 (HSP27) 3.05 1.41
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Table 2 Proteins differentially expressed in hearts of ACF rats. (Continued)
23 72.2 gil438878 tropomyosin 3.04 1.32
10 42 gi|6978501 Annexin Al 3.00 223
35 69.6 gi|535069 Muscle LIM protein [Rattus norvegicus] 297 1.31
22 50 gil6981324 Prolyl 4-hydroxylase, beta polypeptide 291 1.27
59 733 gi|56388799 Brain creatine kinase (Ckb protein) 2.88 1.31
16 30 gi|149048530 Ceruloplasmin, isoform CRA_a 2.80 2.02
34 62.3 gi|744592 Alpha-B crystallin 261 1.05
35 68 gi|157830232 Annexin V 2.58 1.71
20 273 gil462569 Microtubule-associated protein 1A 258 1.30
10 269  gi[158706096  Pre-B-cell leukemia transcription factor-interacting 245 1.23

protein 1
8 344 qil68837285 D-beta-hydroxybutyrate dehydrogenase, 244 1.02
mitochondrial;
10 28 gi|974168  Aldehyde dehydrogenase 1A1 (retinal dehydrogenase 243 1.84
11 28 gi|7533042 Guanine deaminase 241 202
8 289 gi|57241 Sulfated glycoprotein 2 (clusterin) 239 134
24 386 gi|6981022 Hexokinase 1 2.23 NA
59 644 gi[109468300 Alpha-enolase (Enolase 1) 223 1.00
94 507 gi[149063941 Beta myosin heavy chain myo7 222 1.02
14 353 gi|53237076 EH-domain containing 4 222 1.08
22 50 gi|9845234 Annexin A2 2.21 217
11 25 gi|149018456 Microtubule-associated protein 4 218 1.24
6 26 gi|158186676 Calumenin isoform a 217 0.86
39 426 gi|54673763 Heat shock protein 90, alpha (cytosolic), class A 2.14 1.27
member 1

13 60.8 gi|1051270 14-3-3 zeta isoform 1.99 1.18
1 332 gi[55855 Calreticulin 1.90 118
41 269  gi|62646949 Filamin-C (Gamma-filamin) (Filamin-2) 1.87 1.21
18 391 qil157819677 Sarcolemma associated protein 1.81 1.02

Identification of all proteins was based on at least four peptides. (for peptide sequences see Additional data 2). NA- mRNA not represented on the chip.

Sham ACF
—100
HADHA WD o o - e .
e b — 75
MAOA = - ™S
Spi : o — 50
_ - —100
.-
: 1 1o . —75
GAPDH 1w sswne s | — i o— 37

Figure 2 Western blotting confirmation of the expression
changes. HADHA (trifunctional protein subunit A (Hydroxyacyl-
Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A thiolase/enoyl-
Coenzyme A hydratase alpha subunit), MAO-A (monoamine oxidase
A), TGM2 (transglutaminase 2). Ten micrograms of protein was
loaded per lane. GAPDH (Glyceraldehyde 3-phosphate
dehydrogenase) was used as a loading control.

(mitochondrial thioesterase, MTE-1), an enzyme respon-
sible for the intra-mitochondrial generation of free FA
anions from acyl-CoAs were both down-regulated in
ACF. ACF animals in this study also showed significant
downregulation of long-chain acyl-CoA synthetase 1 and
acyl-CoA synthetase family member 2 precursor respon-
sible for the initial binding of fatty acids to the coen-
zyme A moiety, however, their mRNAs were not
represented on the Illumina chip.

Glycolysis

Despite the existence of functional studies suggesting
that a failing heart preferentially utilizes glucose [17], we
found no convincing evidence of up-regulation of the
glycolytic pathway in ACF. The key regulatory enzyme
and the last enzyme of glycolysis - phosphofructokinase
and pyruvate kinase, were both down-regulated in ACF.
Failing hearts also showed decreased expression of mus-
cle-specific enolase-3 (f form) but an increased abun-
dance of the ubiquitous enolase-1 (no change at the
mRNA level).
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Creatine kinase system

We observed decreased abundance of sarcomeric mito-
chondrial (sMt-CK, no change observed at the mRNA
level) and muscle (M-CK) creatine kinase along with up-
regulation of the B-CK isoform (1.3-fold up-regulation of
mRNA) changes typical for animal and human HF [21].
Expression of the three corresponding mRNAs is in
agreement with these trends. The CK system serves as a
temporal buffer of high-energy phosphates (sMt-CK),
and participates in an spatial enzymatic network (M-
CK) responsible for the fast transport of high-energy
phosphates from mitochondria to the contractile
machinery [22,23]. Decreased CK levels may contribute
to the diminished ATP flux via CK observed in HF [23]
and contribute to the limited cardiac functional reserve.

Sarcomeric and Calcium handling and proteins

Of the sarcomeric proteins, we observed up-regulation
of the B-myosin heavy chain (myosin 7, (no change
observed at mRNA level). The switch of the predomi-
nant myosin heavy chain from the a- to B-isoform
affects the contractile phenotype, and is considered a
hallmark of myocardial HF-induced remodeling [3]. The
failing myocardium is also characterized by the dimin-
ished expression of proteins responsible for sarcoplasmic
reticulum (SR) Ca®* uptake, handling and release [24].
Correspondingly, we observed marked down-regulation
of SR calcium ATPase (SERCA2) protein (no change
observed at the mRNA level) and of the main SR Ca®*
release channel - Ryanodine Receptor 2 protein (RYR2)
(0.79 fold down-regulation of mRNA) thus confirming
the molecular HF phenotype in ACF rats. Down-regula-
tion of both proteins in HF has been described pre-
viously and was implicated in diminished contractility,
reduced SR Ca** stores and less efficient energy utiliza-
tion of Ca®" handling [25,26)].

Redox state and stress-response related proteins
Abnormalities in the intracellular redox state have been
implicated in most processes affecting cardiac function
and the development of HF [27]. The antioxidant poten-
tial of the cell is determined by the content of reduced
and oxidized glutathione (GSH and GSSG). A suffi-
ciently high GSH/GSSG ratio is maintained by NADPH-
dependent glutathione reductase. In cardiomyocytes,
NADPH is produced by nicotinamide nucleotide trans-
hydrogenase, isocitrate dehydrogenase, and the pentose-
phosphate pathway. Interestingly, mitochondrial
nicotinamide nucleotide transhydrogenase (NNT), which
accounts for up to 45% of the total NADPH supply [28],
was markedly down-regulated in ACF animals. In addi-
tion, NADP-dependent isocitrate dehydrogenase (IDH2)
which may further contribute to NADPH levels, was
also down-regulated. Our observations led us to
hypothesize that decreased expression of the two

Page 8 of 12

important NADPH producers could compromise the
function of glutathione reductase, explaining the attenu-
ated redox reserve. We recently demonstrated decreased
GSH/GSSG ratio in the failing ACF myocardium [19],
providing support to this idea.

Other proteins

Three members of the large annexin family: Annexin
A5, A2 and Al were up-regulated. Annexins are ubiqui-
tous proteins associated with the inner cytoplasmatic
membrane that are known to bind phospholipids in a
Ca®*-dependent manner and to participate in a variety
of membrane-related events [29] as well as in apoptosis,
inflammation and coagulation. The role of annexins in
cardiac physiology remains largely unknown. Interest-
ingly, all three annexins (A1, A2 and A5) that were up-
regulated in ACF hearts in our study have been pre-
viously implicated in calcium-dependent “cell membrane
resealing”. Such resealing may be relevant in hemodyna-
mically-overloaded hearts with increased mechanical
stress [[30] and references within]. Annexin A5
(expressed mostly in cardiomyocytes) and annexin A2
(detected only in endothelial cells and the extracellular
matrix) but not annexin AI have been previously
reported to be up-regulated in hypertrophic and failing
hearts [29]. Increased serum levels of annexin AS has
been demonstrated in a large study on heart disease
patients and was considered to be a potential marker for
hypertension-related HF [31]. However, authors of the
study however failed to detect increased annexin A5
mRNA in the hearts, raising a question about the source
of the protein. Here we demonstrate up-regulation of
A1, A2 and A5 transcripts, which further supports these
annexin proteins as potential HF markers.

The ACF myocardium displayed up-regulation of Cad-
herin 13 (T- cadherin). Until recently, its heart-related
function has been unknown. This GPI-anchored, lipid-
raft associated member of the cadherin superfamily
recruits adiponectin to heart, and is critical for adipo-
nectin-mediated cardioprotection [32]. Increased expres-
sion here can be explained as an adaptive compensation
for altered levels of circulating adiponectin [33].
Potential therapeutic targets
Among the most markedly up-regulated proteins in our
study are transglutaminase 2 and monoamine oxidase A.
Since both proteins carry promising therapeutic poten-
tial we discuss them in detail.

Transglutaminase 2 (TGM2) was up-regulated 3-fold
in ACF hearts. TGM2 is a multifunctional protein with
G-protein function, disulfide-isomerase and transgluta-
minase activities, found predominantly in the cytosol
and at the cell curface. The transglutaminase activity of
this protein is responsible for stable cross-linking of
peptide chains between lysine and glutamine residues
involved in extracellular matrix stabilization and wound
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healing as well as during apoptosis [34,35]. Due to its G-
protein properties, TGM2 participates in intracellular
signaling via a1-adrenergic and thromboxane receptors
[34], and has been recently shown to promote apoptosis
of rat cardiomyocytes under oxidative stress [36]. Two
independent groups have demonstrated that heart-speci-
fic TGM2 over-expression results in detrimental hemo-
dynamic changes, structural alterations, cardiomyocyte
apoptosis, cardiac hypertrophy and fibrosis [37,38]. Our
observation of up-regulated TGM2 in ACF hearts thus
adds further evidence for the adverse effect of TGM2
up-regulation in cardiac hypertrophy and HF. Effective
low molecular weight inhibitors such as cystamine and
monodansylcadaverine are already known and their use
inhibits TGM2-induced apoptosis in aortic smooth mus-
cle cells [39] and partially repressed hypoxia-induced
cardiac hypertrophy in rats [40]. This highlights the
potential of TGM2 as a novel therapeutic target.

Monoamine oxidase A

The most up-regulated (4-fold) protein in ACF heart is
mitochondrial monoamine oxidase-A (MAO-A), an
enzyme responsible for oxidative deamination of bioac-
tive monoamines (epinephrine, norepinephrine, seroto-
nin), giving rise to hydrogen peroxide and toxic
aldehyde metabolites that are further catabolized by
aldehyde dehydrogenases [41]. In concordance with this,
aldehyde dehydrogenase 1A1 was also found to be up-
regulated in ACF hearts in our study. The hydrogen
peroxide produced by cardiac MAO-A has been shown
to contribute to cardiomyocyte apoptosis [42]. Kalu-
dercic et al. recently demonstrated that increased MAO-
A-dependent catabolism of norepinephrine contributes
to adverse remodeling in pressure-overloaded hearts.
Pharmacological inhibition of MAO-A by clorgyline pre-
vents left ventricle dilatation and dysfunction, attenuated
oxidative stress and increased norepinephrine myocar-
dial content in pressure overloaded hearts [43]. In an
identical model to ours, Kristen et al. showed that ACF
rats have increased circulating norepinephrine levels,
but depleted cardiac norepinephrine stores [44]. In com-
bination with the studies discussed above, our findings
suggest that besides the loss of sympathetic nerve end-
ings [44] or attenuated norepinephrine reuptake [45],
myocardial norepinephrine depletion in HF may result
from its increased catabolism by MAO-A. This process
is common to both pressure and volume overload, and
along with tissue norepinephrine depletion causes oxida-
tive damage to cardiomyocytes. Interestingly, MAO-A
has also been recently identified as a causal agent of oxi-
dative myofibril damage in muscular dystrophy [46]. All
experimental evidence summarized in a recent review
[47] along with our observations strongly indicates that
MAO-A expression/activity is a major contributor to
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cardiac hypertrophy and HF. Low-molecular weight
inhibitors of MAO-A such as moclobemide exist and
are already in clinical use as antidepressants [48]. There-
fore, targeted inhibition of MAO-A activity should be
intensively investigated as a potential therapy for HF.
Proteins with no previous association with HF

Of the 66 differentially expressed proteins at least 6
molecules have not been previously associated with
heart HF and might therefore be new players in the dis-
ease development or progression. No previous connec-
tion with HF has been made for inducible carbonyl
reductase, LRP16 (a compound of the NF-xB transcrip-
tional complex) [49] or Leucine-rich PPR motif-contain-
ing protein (a regulator of mitochondrial transcription)
[50] all down-regulated in ACF. These molecules seem
to be involved in metabolic and regulatory processes,
but information available on these three molecules is
very limited. The up-regulated regulatory protein Pre-B-
cell leukemia transcription factor-interacting protein
alias HPIP (1.3 -fold up-regulation of mRNA) has been
previously studied in the context of MAPK and AKT
activation and estrogen receptor (ERa) and tubulin
binding [51], but no connection with heart has been
made to date. The up-regulated proteins guanine deami-
nase and ceruloplasmin although well known, also have
yet to be connected with HF. Ceruloplasmin is a copper
binding protein with ferroxidase activity, its altered
expression thus may point out toward altered copper or
iron homeostasis in HF. Notably copper metabolism or
balance appears to be disrupted in diabetic hypertro-
phied hearts, and copper chelation has been shown to
improve heart diabetic cardiac function [52]. The indivi-
dual roles of these potential new players in the molecu-
lar puzzle of HF remain to be determined in future
targeted studies.

Conclusions

To our knowledge, our shot-gun study employing pep-
tide IEF combined with nanoLC-MALDI is the largest
(over 2000 proteins) semi-quantitative analysis of pro-
teome changes related to HF to date. We are aware that
our experimental design using two sub-pooled controls
and two ACF sub-pools is not typical. This design was
driven by our aim to penetrate deeper into medium-
and low-abundance proteome and maximize the number
of reliably identified and quantified proteins. Merging of
MS data from three biologically identical runs provided
us with a higher number of identified proteins with
higher sequence coverage, and simultaneously increased
the number of observed iTRAQ reporter quartets for
each protein, thus increasing the reliability of the quan-
titative information. Our second reason for using this
approach is economic. A higher statistical power for the
experiment could have been achieved with iTRAQ
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quadruplex by analysis of one control pool against three
individual ACF animals (or three ACF subpools). How-
ever, such a single control (sham-operated animals) pool
would have to consist of many animals to eliminate the
risk of a single atypical rat affecting the composition of
such a representative control pool. Unfortunately, to
operate and maintain large cohorts of such animals for
almost half a year is economically prohibitive.

Various proteomics strategies have provided several
important “snapshots” of different stages and types of
heart hypertrophy and HF resulting from diverse initial
insults, different underlying molecular mechanisms, and
in different animal models. In this respect the results of
different proteomic analyses are difficult to compare.
However, the similarity of our results with the work of
Grant et al. [53], who used an analogical proteomic
approach to examine effect the of aging on the cardiac
proteome in old versus young rats, is very intriguing.
Similar to our results, aged hearts showed the down-reg-
ulation of enzymes of fatty acids oxidation, SMt- and
M- creatine kinase, electron-transferring flavoprotein
and ATP synthase components. Also in agreement with
our study, aged hearts displayed up-regulated B-myosin
heavy chain, muscle LIM protein, microtubule asso-
ciated proteins 1 and 4, calumenin, calreticulin, annexin
5, prolyl-4-hydroxylase beta subunit, HSP 27 and alpha-
B crystallin. Based on the high concordance of proteo-
mic alterations induced by spontaneous aging and by
overload-induced HF, it is tempting, however specula-
tive, to view the HF developed in our model as a sort of
accelerated, premature aging of the organ.

We are fully aware that our study has one significant
limitation. Being based on a pair-wise comparison our
study lacks important temporal information and can not
discriminate between processes of compensatory hyper-
trophy and later events of HF itself. To access such a
temporal information on the development process and
gradual progression of HF, more time points will have
to be analyzed in the future.

In summary, we identified multiple enzymes involved
in substrate metabolism in the HF myocardium. This
confirms many previous observations and is in accor-
dance with altered substrate preference in the HF [17,18].
These alterations probably reflect the activation of a pro-
survival program of stressed cells, and at least some
changes may be adaptive, maximizing cardiac efficiency.
Our study brings a novel observation suggesting an atte-
nuated redox reserve (down-regulation of NADPH pro-
ducers) in ACF rats which possibly contributes to the
myocardial remodeling in HF due to oxidative stress.
Further, we propose new potential biomarkers of hyper-
trophy and/or HF (annexin A2 and A1) and, most impor-
tantly, suggest two highly potential therapeutic targets for
the treatment of HF - monoamine oxidase A and
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transglutaminase 2. Our work has also identified several
proteins, new in the context of HF, as leads for specific,
hypothesis-driven experiments.

Additional material

Additional file 1: Additional data 1_ statistics of differentially
expressed proteins and mRNAs.pdf. Table presents statistical
significance data on the differential expression of individual proteins
(iTRAQ ratios) and their respective mMRNA expression.

Additional file 2: Additional data 3_peptides used for protein
identifications .pdf. Table shows sequences of three of the n peptides
used for the identification of the 66 differentially expressed proteins.

Additional file 3: Additional data 3_ all identified proteins.pdf.
Extensive table summarizes all other proteins (not differentially
expressed) identified by MS including their accession numbers, sequence
coverage and number of peptides observed.
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