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Abstract

Background: The advent of affinity-based proteomics technologies for global protein profiling provides the
prospect of finding new molecular biomarkers for common, multifactorial disorders. The molecular phenotypes
obtained from studies on such platforms are driven by multiple sources, including genetic, environmental, and
experimental components. In characterizing the contribution of different sources of variation to the measured
phenotypes, the aim is to facilitate the design and interpretation of future biomedical studies employing
exploratory and multiplexed technologies. Thus, biometrical genetic modelling of twin or other family data can be
used to decompose the variation underlying a phenotype into biological and experimental components.

Results: Using antibody suspension bead arrays and antibodies from the Human Protein Atlas, we study
unfractionated serum from a longitudinal study on 154 twins. In this study, we provide a detailed description of
how the variation in a molecular phenotype in terms of protein profile can be decomposed into familial i.e.
genetic and common environmental; individual environmental, short-term biological and experimental
components. The results show that across 69 antibodies analyzed in the study, the median proportion of the total
variation explained by familial sources is 12% (IQR 1-22%), and the median proportion of the total variation
attributable to experimental sources is 63% (IQR 53-72%).

Conclusion: The variability analysis of antibody arrays highlights the importance to consider variability components
and their relative contributions when designing and evaluating studies for biomarker discoveries with exploratory,
high-throughput and multiplexed methods.

Keywords: Variance decomposition, linear mixed-effects model, longitudinal twin study, suspension bead arrays,
antibodies, protein profiling

Introduction
There is an enormous unmet need for biomarkers to char-
acterize disease type, status, progression, and response to
therapy. A biomarker, which can be defined as a physical
sign or laboratory measurement that serves as an indicator
for biological processes, pathogenic processes, or pharma-
cologic responses to a therapeutic intervention [1,2], can
then potentially be used for screening, prognosis, monitor-
ing response to treatment, and detection of recurrent dis-
eases. Technological advances in the different fields of life
science have enabled the generation of data from high-
throughput screening experiments, which can then be
used to identify novel biomarker molecules.

Proteomics, the large-scale study of the protein content
of cells, organs or organisms, offers the potential to evalu-
ate global changes in protein expression, protein interac-
tion patterns and their post-translational modifications
that take place in response to normal or pathological sti-
muli. The availability of DNA microarray analysis permits
expression of thousands of genes to be monitored simulta-
neously, but RNA expression has been found to correlate
significantly to only one third with the corresponding
actual protein content [3]. Therefore the importance of
proteomic research cannot be overstated, as proteins
within the cell provide a structural and functional frame-
work by producing energy and allowing communication,
movement, and reproduction [4].

* Correspondence: b.kato@imperial.ac.uk; jochen.schwenk@scilifelab.se
Full list of author information is available at the end of the article

Kato et al. Proteome Science 2011, 9:73
http://www.proteomesci.com/content/9/1/73

© 2011 Kato et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:b.kato@imperial.ac.uk
mailto:jochen.schwenk@scilifelab.se
http://creativecommons.org/licenses/by/2.0


Recent technological advances in the field of genomics
and proteomics have also brought about a new statistical
research area, the analysis of data from high-throughput
screening experiments. Using protein microarray technol-
ogy, the profiles of thousands of proteins can be monitored
in a high-throughput manner with the aim of selecting a
subset of proteins that could be characterised as potential
biomarkers creating possibilities for diagnostic, prognostic
and disease progression monitoring [5]. When proteomics
emerged, scientists hoped that available technologies would
help them sift through the proteome of blood and tissues
to identify profiles of proteins that indicated the presence
of a disease. Researchers could then use these molecular
signatures as biomarkers to diagnose diseases in their for-
mative stages and therefore be able to tailor appropriate
intervention and treatment. However, one problem is that
the most preferred sample types, serum or plasma, are
highly complex and influenced by a protein composition
where 99% of the total protein mass is covered by only 20
proteins. Even though all proteins are likely to appear in
blood at a given point in time, due to function, secretion or
leakage, their levels can vary by more than 10 orders of
magnitude, with abundant proteins masking the presence
of rare ones. Among the proteomic approaches applied in
the quest for novel biomarkers today, mass spectrometry,
often in combination with 2D-gel electrophoresis or chro-
matographic separation, is still the most commonly used
technique in the field [6], even though the technique is lim-
ited with regard to new diagnostics [7]. Affinity-based alter-
natives are on the rise to enable proteome-wide analysis,
and initiatives have been set up to produce, validate and
offer a larger number of validated affinity reagents [8]. Plat-
forms such as microarrays provide solutions for the imple-
mentation of larger sets of affinity reagents and analysis of
multiple parameters on a minute amount of sample within
a single experiment [9]. Among the immunoassay plat-
forms that employ directly labelled samples [10-12], anti-
body suspension bead arrays to perform highly multiplexed
protein profiling in a large number of serum samples [13].

Utility of twin studies
The phenotype of an individual might change as a result of
complex, dynamic interactions between an individual’s
genome and environmental factors. To characterize and
quantify the contributions that genes, the shared and the
individual-specific environment and the interactions of
these make to human complex traits and phenotypes, we
use data from relatives who grow up in similar environ-
ments but are of differing genetic relatedness (the so-
called ‘twin design’). For a long time, twin studies [14]
have been a valuable source of information about the
genetic basis of complex traits. Twins provide a powerful
design for inferring genetic effects, as they are blocked for
in utero, dietary and socio-economic effects due to

common upbringing. Identical/monozygotic (MZ) twins
derive from a single fertilized egg and therefore inherit
identical genetic material while non identical/dizygotic
(DZ) twins share 50% of their genetic material. In a classi-
cal twin study the assumption is that MZ and DZ twins
share the same degree of similarity in their environments
and therefore one compares phenotypic concordance
within MZ twin pairs to the concordance within DZ twin
pairs. Comparing the resemblance of MZ twins for a trait
or disease with the resemblance of DZ twins offers the
first estimate of the extent to which genetic variation
determines phenotypic variation of the trait or disease.
The sources of variation commonly considered in genetics
are additive genetic influences (sum of individual effects of
all loci that influence the phenotype), dominant genetic
influences (these represent interactions between alleles at
all loci that influence the phenotype), common environ-
ment (influences shared by family members e.g. socio-
economic status) and individual environment (influences
that cause differences among members of one family, e.g.
dietary and lifestyle choices that are not shared by other
family members. Two important population parameters
are heritability and familiality. The narrow-sense heritabil-
ity is the proportion of phenotypic variation within a
population attributable to additive genetic effects. Familial-
ity is the proportion of phenotypic variation within a
population attributable to genetic (additive and dominant)
and common environmental effects.
In the following, we have investigated the variance of

exploratory affinity arrays using longitudinal twin study.

Results
Important attributes of discovered biomarkers, in addition
to being associated with a disease, are that they can be
measured with precision (low variance) and exhibit rela-
tively low amounts of short-term variability relative to the
effect size of the difference between healthy and diseased
individuals [15]. For antibody-based proteomics, antibo-
dies that have high proportions of variability attributable
to familiality and individual environment and have rela-
tively small technical variability are therefore potentially
more valuable for use in biomarker discovery.

Pre-processing
For this study the measured relative quantity of interest is
the intensity of fluorescence emitted and measured when
antibodies immobilized onto beads capture their target
protein from a sample (see Figure 1). The intensity levels
are influenced by a number of underlying factors besides
the antigen’s abundance. These are antibody-antigen
kinetics and affinities, the number of accessible binding
sites on both immobilized antibodies and the labelled anti-
gens, the number of biotin molecules per antigen being
incorporated during labelling reaction, as well as complex
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formation introducing additional biotin molecules carried
by proteins attached to the antigen of interest. Therefore
the variation in the measured intensity levels will be influ-
enced by both biological and experimental factors includ-
ing sample preparation, incubation and read-out.
Molecular phenotypes can be noisy, context dependent,

and sensitive to laboratory, equipment and experimental
conditions. On the current platform, the fluorescence
intensities obtained on each sample can in general not be
compared directly due to variations in sample treatment,
labelling and detection, thus appropriate pre-processing is
needed. Plots of the signal intensities of each antibody
across the randomized samples (Figure 2A and Additional
File 1) show that for some of the antibodies, such as for
example apoh-HPA001654, renbp-HPA000428, apoh-
HPA003732 and icam1-HPA004877, signal intensities
tended to decrease as intensities were measured from
plate well 1 through plate well 96 suggesting an ‘intensity-
drift effect’. This could be introduced during sample pre-
paration, modification of the potential binding site during
sample labelling, slight bleaching of the fluorophore of the
reporter protein, or by the dissociation of antibody-antigen
complexes over time the samples are being measured.
The data were normalized using probabilistic quotient

normalization (PQN)[16]. To assess the efficacy of the nor-
malization we looked at the within-sample concordance

before and after normalization, by computing the Spear-
man correlation between the 48 pairs of aliquot replicates
for each antibody in the data set. See appendix for details
on the correlation model and an example in Figure 3.
Across the 69 antibodies, before normalization the median
Spearman correlation was 0.26 with interquartile range
(IQR 0.19 - 0.36) and after normalization, median Spear-
man correlation was 0.36 (IQR 0.24 - 0.44). These results
show that normalization improves the within-sample
concordance.

Outliers
Using singular value decomposition (SVD) [17] we pro-
jected the 69 dimensional antibody space into a two-
dimensional space (two principal components). Prior to
performing SVD on the data matrix, we scaled the data of
each variable (antibody) to have a mean of 0 and standard
deviation 1. Plots of the two principal components are
shown in Figure 4. As can be seen in the figure, most of
the samples cluster together. However, there are some
outlying samples. For each of the sample points in the fig-
ures, Mahalanobis [18] distance from the origin was calcu-
lated. Assuming that the principal components have a
bivariate normal distribution, the Mahalanobis distance of
each sample was compared to a chi-squared distribution
with 2 degrees of freedom. A sample was defined as an

Figure 1 Experimental workflow - The process begins with (1.) the distribution of samples into microtiter plates according to a defined layout,
dilution and heat treatment. (2.) The protein content of the samples is then label with biotin and (3.) the samples are then prepared for the
assay and heat-treated again. Alongside this, (4.) the antibodies are coupled onto beads with distinct color-codes and an array in suspension is
created and (5.) beads and samples are combined and incubated. (6.) Proteins that have not been captures by the antibodies are removed and
(7.) fluorescent streptavidin is added to bind to the target proteins via their biotin modification. (8.) The beads are then measured and the co-
occurrence of beads, which are identified via a green laser, and the emitted reporter fluorescence, excited by a red laser, allowing determining
interaction dependent intensity values in multiplex.
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outlier if it had a Mahalanobis distance bigger than 18.42
(critical value at a 0.0001 level of significance). Based on
the above criteria, the data set contains 6 out of 270 sam-
ples classified as outliers as shown in Figure 4 highlighted
using numbers.

Variance decomposition
Plots of the data after normalization, removal of outliers
and Box-Cox transformations are presented in Figure
2B and Additional File 2. Further, table 1 shows for
each antibody the AIC obtained from fitting models

1 and 2 (see Modelling and Estimation in the Materials
and Methods Section) on these data. As can be seen in
the table, for some antibodies model 1 had a better fit
(smaller AIC), whilst for others model 2 had a better fit.
This shows that for some antibodies including a linear
plate specific intensity-drift effect modelled the data

Figure 2 Protein profiles. A) Profiles before any data processing are shown from four antibodies across all samples. B) Profiles for the
antibodies are shown after normalization, removal of outliers and BoxCox transformation. The red line indicates the locally weighted scatterplot
smoothing (LOWESS). The vertical dashed lines differentiate between three microtiter plates in which the samples were distributed. Graphs from
all antibodies pre and post data treatment are found in Additional Files 1 and 2.

B1 B2 B3 B4 B5 B6
1a
1b
2a
2b
3a
3b
Figure 3 Correlation model. Suppose we have three duplicated
samples 1, 2 and 3 assayed at 6 antibodies B1 - B6. Denoting the
aliquot pairs of the samples as 1a, 1b, 2a, 2b, 3a and 3c (see table
above), to check the within sample concordance we look at
correlations between the 6 pairs of 3 dimensional vectors. That is
for each of the antibodies B1, B2 and B3, we determine the
correlation between the black and light-grey vectors. Similarly for
antibodies B2, B4 and B6 we look at the correlation between the
white and dark-grey vectors.
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Figure 4 Principal component projection. The graph shows the
normalized data for the 270 samples in the dataset in the two-
dimensional antibodies space. Outlying samples are marked with
numbers.
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Table 1 Akaike’s information criterion

Antibody ID Gene ID Gene Name Model 1 Model 2

HPA002550 ENSG00000118271 ttr 1940 1940

HPA000951 ENSG00000204359 cfb 1047 1047

HPA000952 ENSG00000204359 cfb 758 753

HPA001465 ENSG00000112936 c7 -5645 -5639

HPA003825 ENSG00000131187 f12 -3249 -3248

HPA002350 ENSG00000173372 c1qa 11118 11120

HPA000440 ENSG00000081237 ptprc -1913 -1910

HPA001816 ENSG00000117601 serpinc1 -3394 -3393

HPA001527 ENSG00000091513 tf -1849 -1861

HPA001560 ENSG00000114200 bche -5941 -5938

HPA001654 ENSG00000091583 apoh 396 389

HPA001804 ENSG00000124491 f13a -9394 -9396

HPA001817 ENSG00000204359 cfb -2887 -2893

HPA001832 ENSG00000204359 cfb -4029 -4033

HPA003980 ENSG00000150782 il18 -3202 -3209

HPA004056 ENSG00000091136 lamb1 1311 1285

HPA001833 ENSG00000012223 ltf -1671 -1676

HPA004061 ENSG00000108666 c17orf75 -4030 -4033

HPA001834 ENSG00000047457 cp -4851 -4846

HPA001885 ENSG00000167711 serpinf2 3281 3282

HPA001886 ENSG00000168811 il12a 2147 2152

HPA001900 ENSG00000171564 fgb -2148 -2147

HPA001901 ENSG00000171564 fgb -12737 -12733

HPA004063 ENSG00000110711 aip -1996 -1995

HPA004146 ENSG00000080618 cpb2 -1362 -1358

HPA004252 ENSG00000010610 cd4 -1815 -1814

HPA004335 ENSG00000014257 acpp -1148 -1159

HPA004716 ENSG00000068796 kif2a -143 -147

HPA004732 ENSG00000178772 cpn2 12220 12217

HPA004796 ENSG00000028137 tnfrsf1b 1555 1541

HPA002265 ENSG00000175899 a2m 1810 1811

HPA004824 ENSG00000049239 h6pd -1010 -1020

HPA004827 ENSG00000058056 usp13 -1920 -1933

HPA005448 ENSG00000152942 rad17 503 499

HPA005692 ENSG00000091513 tf 1236 1230

HPA006514 ENSG00000143543 jtb 894 895

HPA006493 ENSG00000065833 me1 -2020 -2022

HPA007724 ENSG00000184500 pros1 -1710 -1706
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Table 1 Akaike’s information criterion (Continued)

HPA007838 ENSG00000143157 pogk -3212 -3207

HPA007845 ENSG00000143318 casq1 -4097 -4094

HPA001254 ENSG00000166165 ckb -5650 -5655

HPA002891 ENSG00000142208 akt1 -1947 -1949

HPA000288 ENSG00000130234 ace2 -3830 -3833

HPA000428 ENSG00000102032 renbp -5983 -6028

HPA000834 ENSG00000160211 g6pd -1733 -1733

HPA000572 ENSG00000120885 apoj -8838 -8845

HPA000793 ENSG00000111674 eno3 -6337 -6336

HPA003732 ENSG00000091583 apoh 3288 3290

HPA001252 ENSG00000150907 foxo1 -5775 -5791

HPA001352 ENSG00000110244 apoa4 799 791

HPA002549 ENSG00000110244 apoa4 4173 4166

HPA001247 ENSG00000179091 cyc1 -4411 -4409

HPA001249 ENSG00000104365 ikbkb -1732 -1745

HPA004877 ENSG00000090339 icam1 -7497 -7519

HPA010525 ENSG00000163736 gpr1 -4672 -4690

HPA001610 ENSG00000183671 pon1 3271 3274

HPA009656 ENSG00000005421 znf174 -814 -815

HPA002989 ENSG00000103343 sparc -1962 -1961

HPA003020 ENSG00000113140 sparc 5458 5451

HPA003827 ENSG00000113140 f13b -1918 -1919

HPA003412 ENSG00000143278 plat -2180 -2175

HPA007875 ENSG00000104368 mmp3 -1768 -1768

HPA008257 ENSG00000069702 tgfbr3 -7226 -7235

HPA006279 ENSG00000143382 adamtsl4 4013 4004

The Akaike’s information criterions (AICs) were obtained for HPA antibodies from fitting models 1 and 2.
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better. Subsequently for each antibody, model 1 or 2
(depending on the model that had a smaller AIC) was
used to obtain maximum likelihood estimates of the
fixed effects and the variance components.
For each antibody the percentage of total variance attri-

butable to familiality (fam), individual environment (env),
common visit (cv), individual visit (iv) and residual experi-
mental effects (exp) each antibody is presented in Table 2
(rows are ordered by decreasing familiality). In Table 2, we
observe that for many proteins the variances of the factors
other than experimental variance are estimated to be zero.
In general, the maximum likelihood (ML) estimators of
the variance components often lie on the boundary of the
parameter space i.e. close to zero. This can result from (a)
the underlying “true” values of the variances being rela-
tively close to zero and/or (b) there being less information
about these variance components, implying that the ML
estimators have relatively high variance.
Figure 5A represents bar plots of the decomposition of

the total phenotypic variance for each antibody after nor-
malization, removal of outliers and Box-Cox transforma-
tions. The graph in Figure 5B summarizes the
decomposition of total phenotypic variance across all anti-
bodies. As can be seen from these figures, most of the
antibody-derived intensities have a high residual (experi-
mental) variance suggesting that a lot of the variance is
attributable to experimental sources and sample complex-
ity. Across the 69 antibodies, the median proportion of
total phenotypic variance attributable to familiality is 12
(IQR 1-22%); the median proportion of total phenotypic
variance attributable to experimental sources is 63% (IQR
53-72%). Combining familiality and individual environ-
ment renders the proportion of non-experimental variance
that is stable over the time period between the two visits
during which data was collected. Across, the 69 antibodies,
the median proportion of total variance attributable to
familiality and individual environment is 25% (IQR 14-
33%). The median proportions of total phenotypic var-
iance attributable to individual visit and common visit is
6% (IQR 0-18%) and 0% (IQR 0-3%), respectively.
In what follows, we present summaries of the propor-

tion of non-experimental variance attributable to famili-
ality, individual environment, common visit and
individual visit. The boxplots in Figure 5C summarize
the decomposition of non-experimental variance across
all antibodies. Across the 69 antibodies the median pro-
portion of non-experimental variance attributable to
familial sources is 34% with (IQR 3-60%).. Across all 69
antibodies, the median proportion of non-experimental
variance attributable to familiality and individual envir-
onment is 71% (IQR 51-93%). The median proportions
of non-experimental variance attributable to common
visit and individual visit are 0% (IQR 0-10%) and 16%
(IQR 0-40%), respectively, indicating that most of the

unstable (short-term dynamic) biological variation is
attributable to individual visit effects.

Antibodies for targeting potential biomarkers
Highlighting those HPA antibodies with most preferred
characteristics, we identified five interesting antibodies
where more than 50% of the total phenotypic variance is
attributable to stable biological (familial and individual
environmental) variability. Among these target proteins
were interleukin 12 (il12a), a heterodimeric 70 kDa glyco-
protein with implications in cell-mediated immunity [19]
targeted by HPA001886 (62%), and angiotensin-converting
enzyme 2 (ace2) targeted by HPA000288 (59%). Ace2 is
an exopeptidase that catalyses the conversion of angioten-
sin I or II and its pharmacological inhibition is associated
with protective effects from cardiovascular diseases.
Further, ADAMTS-like protein 4 (adamstsl4) targeted by
HPA006279 (57%) is a secreted glycoprotein with a sug-
gested function to be involved in cell adhesion and pro-
tease regulation [20]. The tissue-type plasminogen
activator (plat) targeted by HPA003412 (54%) is a secreted
serine protease which converts the proenzyme plasmino-
gen to plasmin and up-regulated gene expression has been
associated with heart failure [21]. The transforming
growth factor beta receptor III (tgfbr3) targeted by
HPA008257 (53%) is a glycosylated protein that is found
as membrane-bound and as soluble form, and is among
the most widely distributed TGF-beta family members
and is suggested to function as accessory molecules in
TGF-beta and FGF systems [22]. Interestingly, a strong
negative correlation between profiles of interleukin 12 and
tissue-type plasminogen activator was observed (Figure 6).
A linkage between these two proteins has been reported
before [23] with il12a inducing the activation of fibrinoly-
sis and thrombin generation. It was also shown that
plasma levels of plat decrease shortly after il12 administra-
tion but increased over time as il12a levels lowered.
The results suggest that some antibodies are more sui-

table and promising than others and that they can be
potential candidates to be used further in biomarker dis-
covery studies. Among these, HPA006279 has been
shown to reveal interesting differences in plasma protein
profiles in Metabolic syndrome cases and controls [24].
The identified antibodies should now be further investi-
gated (i) separately, in combination or supplemented by
other candidates in high-throughput screenings across
diseases, and (ii) to verify their potential implications in
diseases related cardiovascular disorders by meeting the
criteria of clinical test systems (sandwich assays), which
will most likely the improve precision (reduce variance).

Discussion
In this paper we use a linear mixed-effects model in a
unique twin design with duplicated repeated
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Table 2 Phenotypic variance

Antibody ID Gene Name fam env cv iv exp

HPA001886 il12a 42.1 20.1 0 0 37.8

HPA003412 plat 36.9 17 0 8.4 37.7

HPA002550 ttr 31.3 0.7 0 18 49.9

HPA001816 serpinc1 31 0 2.4 0 66.7

HPA006279 adamtsl4 29.7 27 0 0 43.3

HPA002265 a2m 27.9 3 0 20.6 48.5

HPA002549 apoa4 27.4 0 2.2 25.1 45.4

HPA000440 ptprc 26.4 0 0 0 73.6

HPA001817 cfb 26.3 6.4 0 4.2 63.1

HPA007875 mmp3 25.6 0 8 0 66.4

HPA002891 akt1 25.6 0 0 0 74.4

HPA004063 aip 25.5 0 0 8.3 66.1

HPA003732 apoh 25.5 0 4.5 0 70

HPA001352 apoa4 25.2 0 3 31.7 40.2

HPA001610 pon1 24.5 0 0 12.2 63.3

HPA002350 c1qa 24 0 0 9.8 66.2

HPA001249 ikbkb 22.5 0.7 0 24 52.8

HPA001832 cfb 22.5 0 0 19 58.6

HPA005692 tf 22.4 9.1 5 0 63.5

HPA000951 cfb 21.6 19.8 8.2 0 50.5

HPA000952 cfb 21.4 11.9 0.2 9.1 57.4

HPA001900 fgb 20.6 0.5 0 15.8 63.1

HPA001885 serpinf2 20.6 1.4 0 22 56

HPA001247 cyc1 18.8 26.7 0 3.7 50.7

HPA008255 slc27a1 18.5 2.5 0 10.6 68.4

HPA001465 c7 17.9 0 13.2 14.1 54.9

HPA000428 renbp 16.9 17.2 0 9.9 56

HPA009656 znf174 16.1 20.2 0.5 24.3 38.9

HPA004061 c17orf75 15.3 9.8 20.3 0 54.7

HPA007845 casq1 13.9 0 0 0 86.1

HPA006514 jtb 13.6 19.9 0 0 66.5

HPA004732 cpn2 12.9 0 0 0 87.1

HPA001654 apoh 12.2 0 1 5.2 81.6

HPA003020 sparc 11.9 5.6 12.3 34.5 35.5

HPA004716 kif2a 11.3 0 0 0 88.7

HPA004335 acpp 11.3 0 0 0 88.7

HPA002989 sparc 10.9 26.5 0 3.1 59.5

HPA000834 g6pd 10.1 30.9 0 19.1 39.9
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Table 2 Phenotypic variance (Continued)

HPA001834 cp 9.9 22.4 0 0 67.7

HPA001252 foxo1 7.8 22.2 3.2 0 66.9

HPA008354 ppbp 7.6 9.2 8.5 7.3 67.4

HPA003980 il18 7.3 5.1 17.2 34.4 36

HPA004252 cd4 6.7 3.2 6.6 15.6 67.9

HPA001901 fgb 6.3 7.9 0 19.2 66.6

HPA001527 tf 5.9 8.6 8.9 0 76.7

HPA008257 tgfbr3 3.6 49.2 2.1 0 45.1

HPA006493 me1 2.9 1.4 21.2 5.5 69.1

HPA007724 pros1 1.3 21.8 0 20.7 56.2

HPA004877 icam1 1.3 27.1 0 0 71.6

HPA001254 ckb 1.1 21.1 6.5 29.6 41.7

HPA001560 bche 0.9 30.3 8.8 0 60.1

HPA003825 f12 0.5 0 1.6 21.9 76

HPA004824 h6pd 0.1 9.4 0 0 90.6

HPA000793 eno3 0 19.8 2.7 27.8 49.7

HPA005448 rad17 0 2.1 3.9 0 93.9

HPA010525 gpr1 0 11.9 8.3 0 79.9

HPA000288 ace2 0 58.9 2.7 6.9 31.5

HPA007838 pogk 0 0 0 31.8 68.2

HPA001804 f13a 0 39.1 0 0 60.9

HPA001833 ltf 0 21.6 0 0 78.4

HPA004146 cpb2 0 0 0 0 100

HPA000572 apoj 0 38.9 0 8.6 52.5

HPA004056 lamb1 0 0 0 40.1 59.9

HPA004796 tnfrsf1b 0 9.4 0 6.7 83.9

HPA004827 usp13 0 0 0 0 100

HPA003827 f13b 0 16.7 8.6 0 74.7

The percentages of phenotypic variance attributable to familial sources (fam), individual environment effects (env), common visit effects (cv), individual visit effects (iv), and experimental effects (exp) are listed for all
HPA antibodies. Those HPA antibodies with stable biological variance in excess of 50% are highlighted in bold.
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measurements to apportion the total variation of molecu-
lar phenotypes (protein profiles) into biological and
experimental (technical) variation. Understanding the
sources of variation (e.g familial, individual environmental,
and experimental) inherent in the measurement of a mole-
cular phenotype is a key step in assessing the potential for
stable, informative biomarkers. We observed that across
the 69 antibodies the median proportion of total variation

attributable to familial sources was 12%. This familial
component is consistent with protein profiles having the
potential to reflect the polygenic basis of complex disease.
Further, across the 66 HPA antibodies, the median pro-
portion of total variation explained by stable sources
(familiality and individual environment) was 25%. Stable
variation in the current setting comprises that a protein
profile remains constant within an individual over the
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Figure 5 Variance decomposition. A) The bar plot summarizes the decomposition of total phenotypic variance of each antibody. The colours
in each bar represent the proportion of total phenotypic variability attributable to familiality (fam), individual environment (env), common visit
(cv), individual visit (iv), and residual variance (exp). B) Boxplots summarizing the decomposition of total phenotypic variance across all
antibodies. C) Boxplots summarizing the decomposition of biological (i.e non- experimental) variability across all antibodies.
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course of the sampling period. A small proportion of var-
iation originated from the short-term biological compo-
nent, individual visit (median proportion 6%). Common
visit represented an inconsiderable amount of variation.
Most of the variation originated from experimental
sources (median proportion 63%). To our current knowl-
edge, the present study is the first to address the key issue
of investigating sources of variation in data generated by
exploratory antibody microarrays. It should provide
important information when aiming at designing and uti-
lizing such assays and be valuable for multiplexed and
quality controlled assays [25] that will become more
widely used and accepted for clinical testing.
Ultimately, diagnostic tools built on markers discov-

ered via these screening approaches could become valu-
able approaches to predict disease state and progression.
As an example, antibodies that allow the comparison of
individuals that are discordant for diabetes and diabetes-
related clinical traits would be useful for identifying indi-
viduals likely to suffer from diabetes in the future, long
before conventional diagnostic techniques can prove
effective. In this way these affinity-based proteomics
discoveries would become useful in clinical settings.
However, most antibodies used in this screening

method have a large residual variance suggesting that a
large proportion of variation in the data is experimen-
tally derived. Potential (and non-separable) sources of
this experimental variation, which exclude sample col-
lection, preparation and storage, are the:

(i) complexity and composition of the serum samples
which has an effect on the assays;
(ii) biotin modification of samples with regard to the

numbers and variability of modifications introduced per
molecule and sample;
(iii) sample treatment in terms of liquid transfers,

heating, and assay buffer dilution;
(iv) assay procedure with immobilized antibodies

selectively capturing aggregated or free molecules from
the surrounding solution;
(v) fluorescence-based read-out being influenced by

bleaching and dye incorporation onto the target
molecules.
(vi) specificity of antibody binding events.
Addressing these issues would lead to a reduction in the

proportion of phenotypic variation arising from experi-
mental sources. This would in turn reduce the sample
sizes (or degree of technical replication) required to detect
epidemiological effects of interest. A reduction of the
experimental variability, possible to achieve by using two
antibodies to detect a target protein, would ensure that
the experimental noise does not swamp biological signals
of interest. The technical precision of such a measurement
and of other antibodies can be improved, either by addres-
sing the issues outlined above, or, in the short term, by
assaying samples in technical replicate.
Research in the field of proteomics is advancing, with

affinity-based approaches emerging alongside classical
mass spectrometric approaches. With array-based

Figure 6 Correlation of profiles of HPA001886 and HPA003412. A) The intensity profiles from antibodies targeting IL-12 and PLAT were
found to be strongly negatively correlated (R = -0.95, red line), which suggested a biological connection between these two proteins. B) When
the correlation investigation of IL-12 (black circles) and PLAT (open diamonds) was extended to all other antibodies, no correlation value outside
the range of 0.5 and -0.5 was found.
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proteomics becoming a promising area in the field of bio-
medical research, decomposition of the underlying varia-
tion in protein profiles into biological (both stable and
longitudinally fluctuating) and experimental components
is an important and useful step in exploring the applic-
ability of antibody arrays for the exploration of the pro-
teome. Ultimately, such proteomic strategies may lead to
new disease markers and drug targets can be identified,
benefitting from the possibilities offered by the versatility
of both the employed affinity reagents and multiplexed
techniques.

Materials and methods
In this paper we longitudinally collect serum samples from
a cohort of 77 twins (56 MZ pairs and 21 DZ pairs) to
explore the sources of variation underlying antibody array-
based protein phenotypes with the aim of aiding the
design and interpretation of future proteomic research.
We use a mixed-effects modelling approach to obtain esti-
mates of variance components.
This is a longitudinal family study whose design

involves duplicate measurements over time in a sample
that includes related individuals (twins). Consequently it
combines the features of a longitudinal study (the power
to study the pattern of changes in a trait over time) with
the features of a cross-sectional twin study (which allows
one to estimate the variation in a trait attributable to
familial sources).). The study design allows us to break
down the observed molecular phenotypic variance into
four biological components. These are familiality (the
combined effects of genetic and common environment)
and individual environment, both of which are longitud-
inally stable biological components. The two short-term
biological components are common visit and individual
visit, which respectively measure the amount of shared
(by twins within a pair) and non-shared longitudinal var-
iation observed over the sampling period of the present
study (i.e several months).

Subject recruitment
A total of 154 healthy, postmenopausal, female twins,
comprising of 56 MZ and 21 DZ pairs, were ascertained
from the TwinsUK database at St. Thomas’ Hospital
http://www.twinsUK.ac.uk, and invited to participate in
this study. Recruitment of the twins was as follows: eligible
twins were sent an information sheet containing details of
the study as well as two consent forms. If the twins agreed
to participate they signed and sent one copy of their con-
sent forms to the administration team at the Department
of Twin Research and genetic epidemiology (DTR), King’s
College London. Once a consent form was received, a
member of the administration team would contact the
twins by letter and phone to book their appointment. In
addition, 68 twins (34 MZ pairs) were asked to re-attend

once they had successfully completed the first visit with
the time between the two visits ranging from 63 to 99
days (26 twins), 104 to 140 days (34 twins) and 150 to 216
days (8 twins). At each visit to the clinic, the twins were in
pairs.
Fasting blood samples were collected from all selected

twins from one or both visits rendering a total of 222
samples with samples from individuals of a twin pair
taken on the same day. These were to be used for the
study of biological and technical variability in the various
molecular phenotyping platforms, focusing on the unique
opportunities afforded by studies in a large set of clini-
cally well characterised monozygotic and dizygotic twins.
These studies were all part of the Molecular Phenotyping
to Accelerate Genomic Epidemiology (MolPAGE) pro-
ject. For the MolPAGE project, eligible volunteers were
healthy, Caucasian females of North Europe descent,
aged between 45-76 years old. The study was approved
by St. Thomas’ Hospital Research Ethics Committee
(EC04/015 Twins UK). The experiments and subsequent
analyses presented in this paper are based on serum sam-
ples extracted from the fasting blood samples.

Antibodies, Bead Coupling, Sample preparation and
Assay procedure
Antibodies
Protocols for antigen selection, cloning, protein expres-
sion, immunization of rabbits, and affinity purification to
yield polyclonal antibodies were performed as described
previously [26,27]. All protein fragments used for immuni-
zation were produced with a tag and a target protein part
of on average 120 amino acids and in general those pro-
teins had a size of approximately 30 kDa. Antibodies from
the Human Protein Atlas (HPA) have been selected as
described elsewhere [24] (see also Table 1) and 66 were
involved the study, all tested on protein arrays for specifi-
city [28]. In addition rabbit IgG (Jackson ImmunoRe-
search), a human serum albumin binding protein
(Affibody AB) and an anti-IgA antibody (Dako Cytoma-
tion) were also included but not highlighted in further
detail.
Bead coupling
Antibodies were coupled to magnetic carboxylated beads
(MagPlex Microspheres, Luminex-Corp.) in accordance to
the manufacturer’s protocol with minor modifications. For
each antibody, 3.2 μg were coupled to 106 beads in a 96-
well half-area microtiter plate (Greiner BioOne) and beads
were allowed to sediment for 30 s on a magnetic bead
separator (LifeSep™, Dexter Magnetic Technologies Inc.)
prior to the removal of supernatants. For an albumin bind-
ing Affibody® molecule, 4 μg were coupled. Beads were
stored in a protein-containing buffer (Blocking Reagent
for ELISA, Roche) with NaN3. All coupled beads were re-
suspended with sonication in an ultrasonic cleaner
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(Branson Ultrasonic Corporation) for 5 min prior to sto-
rage at 4°C. All antibody-coupled beads were counted
using the Luminex LX200 instrument and the coupling
efficiency for each antibody was determined via R-Phy-
coerythrin labeled anti-rabbit IgG antibody (Jackson
ImmunoResearch). A bead mixture was created in solu-
tion, and optimized as previously described [29].
Sample labelling
Protocols for sample labelling and assay procedure were
based on earlier work [13]. At first, samples were thawed
at room temperature and centrifuged for 10 min at
10,000 rpm, transferred into a microtiter plate (Abgene)
and heat treated at 56°C over 30 min in a thermo cycler
(Biorad). The plates were centrifuged (1 min at 3,000
rpm) and 3 μl of each sample was added to 24.5 μl 1 ×
PBS with a liquid handler (Plate mate 2 × 2, Matrix). N-
hydroxysuccinimidyl ester of biotinoyl-tetraoxapentade-
canoic acid (NHS-PEO4-Biotin, Pierce) was then added
at 10-fold molar excess to yield an overall 1/10 sample
dilution followed by an incubation over 2 hours at 4°C in
a microtiter plate shaker (Thermomixer, Eppendorf). The
reaction was stopped by the addition of Tris-HCl, pH 8.0
at a 250-fold molar excess over biotin and incubated for
another 20 min at 4°C prior to a final storage at -80°C.
Assay procedure
All samples were utilized without removing unincorpo-
rated biotin and diluted 1/50 utilizing a liquid handler in a
assay buffer composed of 0.5% (w/v) polyvinylalcohol and
0.8% (w/v) polyvinylpyrrolidone (Sigma) in 0.1% casein in
PBS (PVXC) supplemented with 0.5 mg/ml non-specific
rabbit IgG (Bethyl). A second heat treatment was per-
formed as above and 45 μl sample were added to 5 μl of
bead mixtures in a microtiter plate (Greiner BioOne).
Incubation took place over night on a shaker at an ambi-
ent temperature. Beads were washed in wells with 3 ×
50 μl PBST (1 × PBS pH 7.4, 0.1% Tween20) on a mag-
netic bead separator with a liquid handling system fol-
lowed 10 min with 50 μl of a stop solution containing
0.1% paraformaldehyde in PBS. Beads were washed 1 ×
50 μl PBST and 30 μl of 0.5 μg/ml R-Phycoerythrin labeled
streptavidin (Invitrogen) in PBST were added and incu-
bated for 20 min. Finally, beads were washed 3 × 50 μl
and measured in 100 μl PBST. Measurements were per-
formed using a Luminex LX200 instrument with Luminex
xPONENT software and counting at least 50 events per
bead ID, displaying binding events as median fluorescence
intensity. A summary of the experimental work flow is
presented in Figure 1. In what follows we will refer to each
measured proteomic phenotype in the study as an
“antibody”.
Of the 222 serum samples obtained from fasting blood,

48 samples from 24 MZ twin pairs were split into two ali-
quots (which usefully allows assessment of technical
replicability) rendering an additional 48 sample aliquots.

The resulting 270 sample aliquots were then randomized
and placed onto three 96-well plates, where each plate
contained an extra 6 reference samples. Subsequently a
total of 69 antibodies were utilized to render a 270 by 69
matrix of protein (antibody) array data.

Statistical analysis - Data pre-processing, Modelling and
Estimation
Data pre-processing
Probabilistic quotient normalization (PQN) [16] was
used to pre-process the data. In metabonomics, PQN
has been used as a robust method to account for dilu-
tion of complex biological mixtures. The method per-
forms well in compensating for different dilutions in
samples. We found this normalization method to
increase a correlation-based measure of technical repro-
ducibility across two aliquots of the same sample (see
Results).
Outliers
Intensity distributions of the antibodies after normaliza-
tion using PQN were investigated to identify samples
that were potential outliers. In order to detect potential
outliers we used singular value decomposition [17] to
project the data into two-dimensional space. Projecting
the data onto the space spanned by the first two princi-
pal-component loadings vectors is a commonly used
technique for detecting anomalous observations whose
extreme behaviour explains a considerable proportion of
variance in the data.
Modelling and Estimation
All subsequent analyses were done on data that had
been normalized using PQN and had undergone
removal of outlying samples. Further, a Box-Cox trans-
formation [17] was performed on the data from each
antibody. This transformed the data so that their distri-
bution more closely resembled a Gaussian, thereby
increasing the quality of fit to the data of the Gaussian-
based mixed-effects model.
Variability analysis
For each molecular phenotype (antibody) we used a sta-
tistical model to quantify the biological and experimen-
tal variation inherent in the phenotype. As mentioned
before, the aim was to partition the total variability in a
molecular phenotype into variability that is attributable
to familiality (additive genetic, dominant genetic and
common environmental), individual environmental,
common visit, individual visit and experimental compo-
nents, respectively. Note that familial and individual
environmental variability together make up stable biolo-
gical variability.
As mentioned previously, the measured quantity of

interest was the intensity of fluorescence emitted when
an immobilised antibody captured an antigen in a sam-
ple. For each antibody let Yijkl denote the normalized
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and transformed intensity of the lth aliquot replicate (1,
2), at the kth visit (1, 2) of the jth twin (1, 2) from the
ith twin pair (1, 2, ...,77). The data for each antibody
was modelled using a linear mixed-effects model
[30-32]:

Yijkl = μp(i,j,k,l) + Aij + Dij + Ci + Eij + Wik + Vijk + εijkl, (1)

where μp(i, j, k, l) is the mean intensity for samples on
plate p (the function p(i, j, k, l) maps sample aliquots to
plates), A is the additive genetic effect, D is the domi-
nant genetic effect, C is the common environment
effect, E is the individual or unique environment effect,
W is the common visit effect, V is the individual visit
effect, and lastly ε represents the residual experimental
effects. The plate mean μp(i, j, k, l) is a fixed effect, while
A, D, C, E, W, and V are random effects. It is assumed
that the random effects are additive and independent.
This implies that the total phenotypic variance can be
decomposed as:

Var (Y) = Var (A) + Var (D) + Var (C) + Var (E) + Var (W) + Var (V) + Var(ε).

The covariance between phenotypic measurements on
a pair of samples gathered at the same visit from mono-
zygotic twins is Var(A) + Var(D) + Var(C) + Var(W),
and for dizygotic twins is (1/2)Var(A) + (1/4)Var(D) +
Var(C) + Var(W). Familiality (fam) is the proportion of
variance attributable to genetic and common environ-
mental effects:

fam = (Var (A) + Var (C) + Var (D)) /Var (Y) .

For twin data, the variances Var(A), Var(C) and Var
(D) are not all identifiable. However familiality is an
estimable function of these variance parameters.
For each antibody, maximum likelihood (ML) esti-

mates of the variance components were obtained by fit-
ting model (1) using the lmer function from the lme4
package in R [33] after normalization, removal of out-
liers and Box-Cox transformations. The model was
reduced prior to fitting. The variances of A, C and D
are not identifiable. In order to address non-identifiabil-
ity we re-parameterized the three non-identifiable var-
iances, Var(A), Var(C) and Var(D) by defining two new
random effects H and M (whose variances are identifi-
able) as follows:

Var(H) = (1/2) ∗ Var(A) + (1/4) ∗ Var(D) + Var(C)

Var(M) = (1/2)*Var(A) + (3/4) ∗ Var(D)

Subsequently the familial variance (which represents
the combined effects of genetics and common environ-
ment) was obtained as the sum of the estimated variances
of H and M, i.e familial variance = Var(H) + Var(M).

Note that if x1 and x2 are the phenotype measurements
of two monozygotic (MZ) twins then the covariance
matrix of the measurements is such that: Var(x1) = Var
(x2) = Var(H) + var(M) +Var(E) and covariance(x1, x2) =
Var(H) + Var(M). Similarly if x1 and x2 are the phenotype
measurements of two dizygotic (DZ) twins then covar-
iance matrix of the measurements is such that: Var(x1) =
Var(x2) = Var(H) + Var(M) + Var(E) and covariance(x1,
x2) = Var(H). A similar approach has previously been
used and elaborated on metabolomics data [34].
The PQN pre-processing procedure that we applied

should mitigate any systematic differences between mea-
surements in the different wells introduced by the instru-
mental time drift between plate well 1 through to plate
well 96. However, in order to investigate if there were
any substantial significant intensity-drift effects remain-
ing after PQN we also fit a second model (hereafter
referred to as model 2) by introducing a linear, plate-spe-
cific well location term into model 1, where well location
is a number between 1 and 96 representing the position
of a sample in the plate wells. That is in model 2, for
each antibody we fit a linear mixed-effects model with
linear, plate-specific intensity-drift fixed effects and the
random effects A, D, C, E, W, and V as before. Subse-
quently Akaike’s information criterion [35,36] was used
to compare the fit of models 1 and 2. Akaike’s informa-
tion criterion (AIC) is a measure of the goodness of fit of
an estimated statistical model and is defined as:

AIC = 2k - 2ln(L),

where k is the number of parameters in the model,
and L is the maximized value of the likelihood function
for the estimated model. For a given a data set, several
competing models may be ranked according to their
AICs and the model with the smallest AIC is chosen as
the one that fits the data best. The pre-processed data
and R script used to perform the variability analysis can
be found as Additional Files 3 and 4.

Appendix
Correlation model
Consider a proteomics platform, which measures the
abundance of p proteins, indexed by k Î {1,...,p}. Suppose
that there are n samples, indexed by i Î {1,...,n}, and each
is measured in technical duplicate, with duplicates
indexed by j Î {1, 2}. A model for the observed data is:

y(k)ij = μ(k) + ν
(k)
i + ε

(k)
ij

where:

• y(k)ij is the abundance of the kth protein as mea-

sured in the jth replicate of the ith biological sample
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• μ(k) is the mean (across all samples) of the mea-
sured abundance of protein k

• ν
(k)
i

is the biological deviation in the abundance of

protein k in sample i around μ(k)

• ε
(k)
ij is the experimental variation in replicate j of

sample i at protein k.

The correlation-based measure of technical reproduci-
bility used in the current paper was calculated for each
protein in turn, as follows. For the kth protein, we formed

the two vectors v(k)1 ≡
(
y(k)11 , y

(k)
21 , ..., y

(k)
n1

)
and

v(k)2 ≡
(
y(k)12 , y

(k)
22 , ..., y

(k)
n2

)
, and then estimated the correla-

tion between the two: r(k) ≡ cor(v(k)1 , v(k)2 ) ; r(k) is directly

related to the utility of the platform, as it measures the
reproducibility across replicates for each individual
protein.
A different, commonly used (and often misinterpreted)

measure of correlation would be calculated as follows. For
the pair of replicates of sample 1, form the two vectors

w11 ≡
(
y(1)11 , y(2)11 , ..., y(p)11

)
and w12 ≡

(
y(1)12 , y

(2)
12 , ..., y

(p)
12

)
,

and then estimate the correlation between the two: s1 ≡
cor(w11,w12). It is less appropriate to use the correlation
across proteins, s1, as this is affected by the overall scale of
the range of measurement. For instance, for the same level

of technical variation, Var(ε(k)ij ) , s1 can be made arbitrarily

large by increasing the range between the expected values
of the lowest- and highest-expressed protein levels (i.e.
increasing the range of the μ(k)).

Additional material

Additional file 1: Protein profiles before data processing. Profiles
from all antibodies across all samples are shown before any data
processing, with the red line indicating the locally weighted scatterplot
smoothing (LOWESS).

Additional file 2: Protein profiles after data processing. Profiles from
all antibodies across all samples are shown after any data processing,
with the red line indicating the locally weighted scatterplot smoothing
(LOWESS).

Additional file 3: Pre-processed data. The csv file contains pre-
processed intensity values for all antibodies across all samples.

Additional file 4: R script for variability analysis. The R script can be
used to perform the variability analysis with the pre-processed data from
Additional File 3.
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