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Abstract

Background: Fourier Transform Mass Spectrometry coupled with Liquid Chromatography(LC-FTMS) has been
widely used in proteomics. Past investigation has revealed that there exists an intensity dependent random
suppression in peptide elution profiles in LC-FTMS data. The suppression is homogenous for the same peptide but
non-homogenous for different peptides. The correction of suppressed profiles and an estimation on the range of
suppression are necessary for accurate and reliable quantification using FTMS data.

Results: A software package, Gcorr, is presented. The software corrects peptide profiles that satisfy correction
conditions, and it can predict fold change null distributions at different intensity levels. Subsequently, the
significance P-values of measured fold changes can be estimated based on the predicted null distributions. We
have used an 1:1 LC-FTMS label-free dataset pair collected based on the same sample to verify that our predicted
null distributions conforms to that of the observed null distribution.

Conclusions: This software is able to provide suppression correction for peptide profiles, suppression distribution
analysis and peptide differential expression analysis in terms of its fold change significance. The software is freely
available at http://compgenomics.utsa.edu/Suppression_Study.html.

Background

Due to its capability in achieving high resolution and
mass accuracy simultaneously, Fourier Transform Mass
Spectrometry(FTMS) has gained popularity in quantita-
tive analysis of biomolecules and biomaker discovery [1].
However, many researchers have found ion abundance
accuracy of FTMS instrument problematic. Padley et al
[2] make note of several sources of non-linearity in mea-
surement. Schrader et 4l[3] also mention signal loss in
large compound library experiment. Sterner et al[4] find
that the signal of small proteins is suppressed by larger
ones. Gordon et al find that due to ion interactions, the
spectral signal intensities do not necessarily reflect true
trapped-ion abundances [5]. Additional signal suppres-
sion phenomena due to the effects of measuring several
peptides are brought up in [6].
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In our previous work [7], we found that: 1)there exists
signal suppression in Liquid Chromatrograhpy-FTMS
(LC-FTMS) by investigating the isotope ratios between
13C and '*C; 2) the suppression is intensity dependent,
the lower the intensity level, the severer the suppression;
and 3)the suppression is non-homogenous for different
peptide but homogenous for the same peptide. We
developed a correction algorithm to correct peptide pro-
files with relative high intensity. For peptide profiles that
cannot be corrected, we analyzed the range of suppres-
sion and it showed that 10% to 300% of measurement
error could be resulted due to suppression.

Given such severe random suppression that affects a
significant portion of peptides, the use of FTMS for bio-
marker discovery is questionable unless we can estimate
the impact of random suppression. In this paper, we
consider how the random suppression would affect fold
change measurements of peptides between two label-
free LC-FTMS samples or labeled LC-FTMS samples
which is critical in differential analysis aiming for
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biomarkers discovery. Since many current biomarker
discovery projects [8] employs LC-FTMS, our consid-
ered problem is critical.

Given a 1:1 label-free LC-FTMS dataset pair contain-
ing the same sample, because of experimental variation
and random suppression, the measured peptide fold
change is actually randomly distributed around 1:1,
which is defined as the null distribution. We will need
such null distributions to estimate the significance of
measured fold changes in LC-FTMS experiments that
compare two different samples. Note that since suppres-
sion characteristics change with intensity levels, null dis-
tributions also changes [7]. At a lower intensity level,
due to significant random suppression, the null distribu-
tion generally has a large variance. At higher intensity
levels, the random suppression effect is considerably
less, and the null distribution is mainly caused by
experimental variations. Generally, the null distribution
at a given intensity level is not directly available in a
regular differential LC-FTMS experiments, and we have
to estimate them in order to provide significance P-
values for all fold changes. Without estimating the
appropriate null distributions, it would be hard to detect
differentially expressed proteins reliably especially in the
low intensity region. Currently no software provides
such significance estimation or suppression correction.
We develop a software, Gceorr, that performs correction/
suppression characteristics analysis, and fold change sig-
nificance estimation at different intensity levels.

Method

The Gcorr software aims at correcting peptide profiles
that satisfy correction conditions, providing suppression
characteristic analysis, and estimating the significance
levels of fold changes. The Gceorr software package con-
sists of three parts: data preprocessing, profile correction
and suppression analysis. In preprocessing, it performs
mass calculation, extracted ion chromograph (XIC)
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calculation and peptide peak interval detection for each
peptide of interests, for details see our previous work
[7]. Then the elution profiles of peptides that meet cor-
rection conditions are corrected. Finally the overall sup-
pression fold change characteristics is estimated based
on corrected peptide profiles, and null distributions at
different intensity levels are estimated for the calculation
of significance P-values of measured fold changes. The
flow diagram of Gcorr is shown in Figure [1]. We
develop a graphical user interface which is shown in
Figure [2].The tool box is implemented as a stand-alone
MATLAB application, which is freely available at http://
compgenomics.utsa.edu/Suppression_Study.html.

Datasets used and data format
We use two replicate QC datasets and a UPS1 dataset
for development and demonstration of Georr. The QC
dataset is a quality control dataset generated on the
organism LTQ_Orb_2. We downloaded the QC datasets
DatasetQC_Shew_07_011pt0_b_04Feb07_Falcon_070202
and DatasetQC_Shew_07_011pt0_b_04Feb07_Fal-
con_070203 from http://omics.pnl.gov/browse/. For
details of the data please see [9]. In the QC datasets,
tandem peptide identification is performed at the same
time of the LC/MS experiment and a peptide list anno-
tated with sequence, charge state and elution time infor-
mation is provided for each dataset. UPS1 is a
Proteomics Standard Set (from SIGMA — ALDRICH™),
consisting of a mixture of 48 individual human source
or human sequence recombinant proteins, each of
which has been selected to limit heterogeneous post-
translational modifications (PTMs). The total protein
content in each vial is 10.6 mg. Each protein has been
quantitated by amino acid analysis (AAA) prior to for-
mulation. All these datasets are collected on LC-FTMS.
Both LC-MS(MS1) data and LC-MS/MS (MS2) data
are required to run the software. Currently, the software
support MS1 data in mzxml format and MS2 data in

MS1 Info
(Heavy and
light)

XIC calculation
(Heavy and >
light)

Mass Calculation
for selected P
peptides

MS2 Info

Preprocessing

Correction
No processing
No
Interval M
detection for Yes Profile
heavy and light correction
samples
I
Suppression Analysis ﬁ‘ﬁ
Suppression Fold Change
| uppressron Significant P-
Characteristics
Estimation value
istima . .
Calculation

Figure 1 Flow diagram of the software. The flow diagram of the software.
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Figure 2 The graphical user interface. The graphical user interface.

excel format. Many instruments support the mzxml for-
mat, and many tools are available to convert .raw to .
mzxml files, . We require that MS2 files in excel format
must be the output of Trans-Proteomic Pipeline(TPP)
[10], the MS2 data file after TPP contains a list of pep-
tides that have been identified, and need to be quanti-
fied. Most importantly, the MS2 peptide list is
annotated with PeptideProphet [11] scores which allows
us to pick existing peptides for suppression characteris-
tic analysis. More detail of the data format is provided
in the supplemental material. After the MS1 and MS2
information are loaded, the mass, XIC and peak interval
of identified peptide are calculated. As the preprocessing
could be very time consuming(depend on the size of the

input data and the number of peptide of interest), the
output of mass, XIC and peak interval values can be
exported as MATLAB .mat files and stored for future
uses. The output of the software is a peptide list in text
format. The result file include these information: the
peptide sequence, the abundance before correction,
whether the peptide is correctable, abundance after cor-
rection and the p-value of fold change. The Gcorr soft-
ware takes these input files: 1) Two label free LC-FTMS
files that contains samples of two classes to be com-
pared; 2) A list of peptides to be differentially analyzed;
and 3) a null distribution file that describes experimen-
tal variations. Given these inputs, Gcorr outputs: 1) Cor-
rected peptide profiles and their corrected fold changes
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if they can be corrected. 2) Fold change significance P-
values for peptides that can not be corrected. The Gcorr
software can be easily extended to process labeled LC-
FTMS datasets.

Correction function estimation and correction conditions
In this section, we briefly describe the correction func-
tion in Georr. In [7], we developed an peptide profile
correction algorithm based on iterative conditional
mode (ICM) algorithm. Given a peptide, we denote its
observed elution profiles as y; = [y;(¢1), y1(£2), ...] for the
higher peptide profile, and y, = [y5(t1), y2(£2), ...] for the
lower profile of '>C and '3C respectively, where #, t,, ...
are sampling time of the elution profiles. Define x; and
X, as the true profiles of the peptide. x; and y; are
related as x; = fly;), where f{*) is the correction function.
We define the inverse function of f{-) as the distortion
function g(-). We verified in our previous work, that the
distortion of different isotopes is the same for the same
peptide, and we have x; = fly;) and x5 = fly,). Let T =
X1 + X, represents the total ion count of the peptide at
12C and "C. The basic idea is: 1.Set an initial value for
the total ion count T = y; + y,. 2. Based on the total
ion count, the isotope ratio r and y,, calculate the most
probable correction function. 3. Correct the elution pro-
files y; and y, using currently estimated correction func-
tions, and the values of x; and x, are updated. 4.
Estimate a new correction function with the updated x,,
the isotope ratio and the total ion count T. 5. Repeat
step 4, and 5 until the convergence condition is met.
We can obtain the correction function and the corrected
peptide profiles after the application of the algorithm.
For detail of the algorithm please refer to [7]. However,
the algorithm can only be used to correct peptide pro-
files that satisfy these correction conditions: 1. The iso-
tope ratios are not close to zero or one (x,/x; = 0.2 to
0.8 for example), since in these cases, the suppression is
not detectable by comparing y; and y,; 2.The maximum
intensity of y, need to be greater than the distortion
free range lower limit (10°) , as the function can only be
estimated on the range that y, spans, and if max(y,)
does not reach the lower limit, then the correction func-
tion cannot be found for the full range that needs
correction.

Suppression characteristics study

The correction algorithm corrects profiles that meet
the correction condition almost perfectly. However,
only part of peptide profiles with y, reaching certain
threshold can be corrected. In general, such threshold
is very high, and the intensity of most peptides (70% -
90%)are lower than the threshold [7]. We want to
understand the characteristics of those uncorrectable
peptides. We consider the correction functions that
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has been found as random samples of all possible cor-
rection functions, based on which, we can estimate the
overall suppression characteristics. We want to know
how the peptide profiles are suppressed at different
intensity levels. To estimate suppression characteris-
tics, we apply random correction functions to typical
peptide profiles at lower intensities to get an estima-
tion of the range of suppressions at different intensity
levels.

Our investigation reveals that the suppression is differ-
ent in different labs. In Figure [3], we plot the correc-
tion functions of two different datasets (UPS1 and QC)
collected from two labs, we can see that there exits an
obvious difference of the two set of correction functions.
However, for replicate QC data, their correction func-
tions are is similar as shown in Figure [4]. This shows
that in the same lab with identical experimental condi-
tions, we can assume similar statistical characteristics in
correction functions.

Fold change variation analysis

Once we obtain samples of correction functions for each
LC-MS dataset, we can further examine the fold change
variation of peptides from different samples in differen-
tial analysis using LC-FTMS. The variations in measured
fold change are caused by experimental and instrumen-
tal variations. These variations need to be considered
carefully in biomarker discovery, as the variation are
intensity dependant. Georr provides a tool for evaluating
whether fold changes of peptides are significant.

x 10°

Figure 3 The comparison of correction functions of UPS1 data
and QC data. The comparison of correction functions of UPS1 data
and QC data. The red lines are the correction functions of UPS1
data, and the blue lines are the correction functions of QC data.
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Figure 4 The comparison of correction functions of two QC
replicate data(QC02 and QCO03). The comparison of correction
functions of two QC replicate data(QC02 and QCO3). The red lines
are the correction functions of QC02 data, and the blue lines are
the correction functions of QC03 data.

Experimental and instrumental variation

There are two kind of variations in the FTMS data. One
is experimental variation which is caused by sample pre-
parations and other experimental steps. The other is
instrumental variation which is the result of random
suppression.

Experimental variations can be obtained by inspecting
the measured ratios between identical peptides in two
datasets that are supposed to contain the same amount
of such peptides. The most convenient way to get such
a null distribution is to inspect a 1:1 label-free LC-
FTMS dataset pair collected based on the same sample.
We have found that the suppression is intensity depen-
dent in our previous work, and when the intensity of a
peptide profile is greater than a certain threshold, the
observed profile is suppression free. The variation in
measured fold changes of suppression free peptide pro-
files is only determined by the experimental process,
and we can consider the fold change distribution of sup-
pression free peptide profiles as the experimental null
distribution. For the profiles that is lower than the
threshold, they suffers from both experimental and
instrumental variation. As the suppression is intensity
dependent, the resulted null distributions are different
at different intensity levels and they can not be consid-
ered as experimental distributions. Several runs of 1:1
data can be collected to further confirm the experimen-
tal variation in a particular set of experimental condi-
tions. If 1:1 dataset are not available, identical amount
of peptide standard can be spiked in two samples for
experimental null distribution estimation.
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For example, in the two replicate QC datasets, the
sample ratio is 1:1, and we found that profiles are gener-
ally distortion free if the intensity is greater than certain
threshold(10° in this case). We can use the higher por-
tion of the profiles to estimate the effect of the experi-
mental variation. Figure([5] is the log abundance ratio
distribution of the distortion free peptide profiles from
the two replicate data. We can see the distribution is
much narrower than the overall distribution(centered at
-0.05). The variation of profiles that are lower than 10°
can be attributed to from both experimental and instru-
mental variations. For example, assuming that due to
experimental variation, the abundance ratio of a particu-
lar peptide is 0.9. Subsequently in FTMS, the profile
from the less abundant sample will be suppressed more
than that in the more abundant sample, and as a result,
the abundance ratio may be measured at 0.85. Figure [6]
shows the log abundance ratio distribution of the sup-
pressed peptide profiles. We can see that the ratios are
further lowered(centered at -0.1) and the variance has
increased.

From these observations we hypothesize that the over-
all variation if measured fold changes is caused by
experimental variations and instrumental random sup-
pression. While the experimental variations are not
intensity dependant, the instrument variation is. Under
this hypothesis, if given experimental variations of an
typical differential LC-FTMS experiments, we can get a
null distribution of fold changes at any given intensity
level with the collection of estimated correction/distor-
tion functions. Then base on null distributions at differ-
ent intensity levels, we can provide a significance p-

0.35

0.3F §

log(r)

Figure 5 The foldchange distribution of suppression free
peptide profiles. The foldchange distribution of suppression free

peptide profiles.
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Figure 6 The foldchange distribution of peptide profiles

suffering from both experimental variation and instrumental

variation. The foldchange distribution of peptide profiles suffering

from both experimental variation and instrumental variation.

value for any measured fold change between two sam-
ples. Note that generally the null distribution is not
directly available in a typical differential LC-FTMS
experiment due to different sample contents.

To test the hypothesis, here we show that for a 1:1
label-free dataset pair, we can predict a null distribu-
tions that conforms to the observed null distribution at
different intensity levels after we transform an experi-
mental null distribution by estimated correction/distor-
tion functions. Note that with a 1:1 dataset pair
collected based on the same sample, it is possible to get
the observed null distribution on fold changes at differ-
ent intensity levels. However in most cases, such distri-
butions are not available.

In replicate QC datasets, 18 peptide profile pairs
satisfy the correction conditions, and their correction
functions are obtained using the ICM algorithm [7]. We
want to (1) extract experimental null distributions form
unsuppressed parts of the profiles that are greater than
a threshold 10°. (2) We want to see how the experimen-
tal null distribution would be further spread due to
instrumental suppression at a given intensity level. To
accomplish this, we first sample randomly corrected
peptide profiles y, and scale them to desired intensity
range. Then we take a sample from the experimental
null distribution, if the sampled fold change is & (j indi-
cates jth sample from the experimental null distribu-
tion), then we pretend that y, as the sampled profile in
one LC-MS dataset, and ' - Y, as the peptide profile
from the other dataset. We then apply all distortion
functions derived from one LC/MS datasets

as ygpl =gi(y,), and ygpz =8y, -aj). We then
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dom suppression, where g;(-)s are distortion functions, i
e (1, 2,..., N) where N is the total number of sample
correction/suppression functions. We repeat this process
for different samples from the experimental null distri-
bution. The set of 7/ will form a predicted null distribu-
tion of fold changes at the considered intensity level.
Subsequently, based on the 1:1 dataset pair, we found
18 peptide profiles that are within the same intensity
range as that of the predicted null distribution. We con-
sider the fold change distribution of these peptides as
the observed one. Figure [7] illustrates the predicted
null distribution and the observed one, we can see that
the two distributions are similar to each other. We use
the Kolmogorov-Smirnov Test to determine if the two
distribution differs [12]. The null hypothesis is that the
two distributions are the same. Calculation result fail to
reject the null distribution with a p-value 0.17. This
result show that our hypothesis is valid and we can use
predicted null distributions for fold change significance
analysis in the next step.
Significance Estimation
As the experimental null distribution and the overall
null distribution are base on 1:1 label free samples, it is
expected that a lab will first conduct a 1:1 sample run
to get an estimation of experimental variation using the
same set of equipments.

Subsequently at a regular differential experiment, the
Gceorr software would be applied to find correction/
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Experimental Null distribution
Observed Overall Null Distribution
0.6 Predicted Overall Null Distribution |
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Figure 7 Comparison of the observed null distribution and the
predicted null distribution. Comparison of the observed null
distribution and the predicted null distribution.
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Figure 8 Correction result of one peptide. Correction result of one peptide.

distortion functions. Subsequently, given a fold change
measurement between two peptides, we will first deter-
mine its intensity range and estimate its overall null dis-
tribution based on the set of estimated correction/
distortion functions. Once we have obtain the null dis-
tribution estimation, then the fold change’s significance
score will be calculated based on the null distributions.

Test on two label-free QC datasets

The QC dataset has two replicates. We load the MS1
and MS2 data from both QC datas, then the mass, XIC
and peak interval are calculated. With the preprocessed
data, the peptides that meet the correction conditions
are corrected. Figure [8] is the correction result of one
peptide. Using peptide profiles that meet the correction

condition, the suppression characteristics can be esti-
mated, Figure [9] is the fold change statistics. After
these steps we performs experimental null distribution
estimation, and for each measured fold change we esti-
mate its overall null distribution based on the intensity
of the taller profile. Then Gcorr estimate the signifi-
cance p-value for all the fold changes. The output files
of this experiment are posted on the website http://
compgenomics.utsa.edu/Suppression_Study.html.

Conclusions

We develop a software for correcting the signal suppres-
sion in FTMS data based on the interactive correction
mode algorithm. The software have been tested with
replicate QC data, part of peptides satisfying the

Suppression fold change

\

Max intensity of Y,

Figure 9 Fold change statistics of QC data. The black solid line is the mean value of suppression at different level; the gray solid line is mean
value + standard deviation; the gray dash line is mean value +3x standard deviation.

6 8 10
x 10°
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correction condition can be corrected perfectly. With
the corrected peptide profiles, the overall null distribu-
tion is estimated and compared to the theoretical pre-
diction at a lower intensity level. Based on such null
distributions, the significance P-value of fold changes in
a typical LC-FTMS differential analysis experiment can
be calculated.
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