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Abstract 

Background:  The target-decoy strategy effectively estimates the false-discovery rate (FDR) by creating a decoy 
database with a size identical to that of the target database. Decoy databases are created by various methods, such as, 
the reverse, pseudo-reverse, shuffle, pseudo-shuffle, and the de Bruijn methods. FDR is sometimes over- or under-esti-
mated depending on which decoy database is used because the ratios of redundant peptides in the target databases 
are different, that is, the numbers of unique (non-redundancy) peptides in the target and decoy databases differ.

Results:  We used two protein databases (the UniProt Saccharomyces cerevisiae protein database and the UniProt 
human protein database) to compare the FDRs of various decoy databases. When the ratio of redundant peptides 
in the target database is low, the FDR is not overestimated by any decoy construction method. However, if the ratio 
of redundant peptides in the target database is high, the FDR is overestimated when the (pseudo) shuffle decoy 
database is used. Additionally, human and S. cerevisiae six frame translation databases, which are large databases, also 
showed outcomes similar to that from the UniProt human protein database.

Conclusion:  The FDR must be estimated using the correction factor proposed by Elias and Gygi or that by Kim et al. 
when (pseudo) shuffle decoy databases are used.
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Introduction
One of the most important steps in peptide identification 
is to estimate the false discovery rate (FDR). To estimate 
the FDR, the target-decoy strategy [1] and the mixture 
model-based method [2, 3] have been suggested. The tar-
get-decoy strategy is easy to implement and effective, so 
it is frequently used [1].

The target-decoy strategy effectively estimates the FDR 
by creating a decoy database which is identical in size to 
the target database. There are various decoy construc-
tion methods. The most frequently used is the reverse 
method, which creates a decoy database by reversing the 

proteins in the database. The shuffle method, which is 
often used among stochastic methods, employs a decoy 
database created by shuffling the amino acids of the tar-
get database protein [4]. Recently, the de Bruijn method 
[5] was proposed, which creates a decoy database using 
a de Bruijn graph. This method is a repeat-preserving 
decoy database construction method, which resolves a 
major problem of the (pseudo) reverse database, namely, 
that the decoy databases are not random.

In this study, we compared the FDRs of various decoy 
databases. We created protein-level decoy databases by 
employing the reverse, shuffle, pseudo-reverse, pseudo-
shuffle, and de Bruijn methods. The Comet search engine 
[6] was used for peptide identification with concatenated 
target-decoy databases. First, the results were compared 
for identified peptide-spectrum matches (PSMs) with 
1% FDR and without the correction factor. The (pseudo) 
shuffle method leads to overestimation of the FDR [7, 
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8] because the ratio of redundant peptides in the target 
database is significantly different. That is, the numbers of 
unique (non-redundant) peptides in the target and decoy 
databases are significantly different. To avoid the overes-
timation problem of the (pseudo) shuffle method, Elias 
and Gygi proposed using the correction factor when the 
FDR is estimated [1, 7]. Therefore, the results were com-
pared for identified PSMs with 1% FDR and with or with-
out the correction factor.

Methods
Databases
We used two databases, the UniProt human protein 
database (version 202,006 comprising 210,556 proteins) 
and the UniProt Saccharomyces cerevisiae protein data-
base (version 202,006 comprising 6,758 proteins), with 
contaminants added (179 proteins). One reverse decoy 
database and one pseudo-reverse decoy database were 
created. In addition, five shuffle decoy, five pseudo-shuf-
fle decoy, and five de Bruijn decoy databases were created 
in consideration of the variation in these decoy databases. 
In total, ten decoy databases were created in each protein 
database. Additionally, we used human and S. cerevisiae 
six frame translation (6FT) databases with UniProt data-
bases and contaminants added. (36,846,527 proteins and 
166,062 proteins, respectively).

Dataset
An MS/MS dataset from 11 human cell lines (A549, 
GAMG, HEK293, HeLa, HepG2, Jurkat, K562, LnCap, 
MCF7, RKO, and U2OS, each with three replicates) was 
obtained using an LTQ-Orbitrap Velos mass spectrom-
eter (Thermo Fisher Scientific, Bremen, Germany) [9]. 
The HEK293 24-fraction MS/MS dataset was obtained 
with a Q-Exactive Orbitrap mass spectrometer (Thermo 
Fisher Scientific, Bremen, Germany) [10]. The S. cerevi-
siae Elite MS/MS dataset was obtained with an Orbitrap 
Fusion mass spectrometer (Thermo Fisher Scientific, 
Bremen, Germany) [11]. The S. cerevisiae 2DLC MS/MS 
dataset was obtained using a LTQ-Orbitrap hybrid mass 
spectrometer (Thermo Fisher Scientific, Bremen, Ger-
many) [12]. Peptide fragmentation was performed using 
the higher-energy collisional dissociation (HCD) method. 
Supplementary Table 1 shows the number of spectrum in 
the human cell lines, the HEK293 24 fraction, in the S. 
cerevisiae Elite and 2DLC datasets.

Decoy database construction
Reverse method
This method is most commonly used when the target-
decoy strategy is employed. It creates a decoy database 
by reversing the proteins of a given target database. For 
example, if there is a target protein called “AGCKDEFR,” 

the amino acid present in the protein is reversed to make 
the decoy protein “RFEDKCGA.”

Pseudo‑reverse method
This method is identical to the reverse method, but it 
reverses only the peptides between K and R. For example, 
if there is a target protein called “AGCKDEFR,” it reverses 
the amino acids between K and R present in the protein 
to make the decoy protein “CGAKFEDR.”

Shuffle method
This method creates a decoy database by shuffling pro-
teins in the given target database. For example, if there is 
a target protein called “AGCKDEFR,” the amino acid pre-
sent in the protein is shuffled to create the decoy protein 
“KDFERCGA.”

Pseudo‑shuffle method
This method is identical to the shuffle method but shuf-
fles only the peptides between K and R. For example, if 
there is a target protein called “AGCKDEFR,” the amino 
acids between K and R present in the protein are shuffled 
to make the decoy protein “CAGKEFDR.”

De Bruijn method
This method creates a decoy database using a de Bruijn 
graph from the protein of the given target database. 
For example, if there is a target protein called “AGCK-
DEFR,” the graph is implemented with the protein in the 
k-mer form. The edge, indicating the amino acid, is then 
randomly changed according to the amino acid prob-
ability of the entire database to create the decoy protein 
“CAGKEDFR.”

Search engine and parameters
We used Comet as the database search engine. (2019.01 
rev. 1 version) [6] The following parameters were 
used for the human cell line datasets and the HEK293 
24-fraction dataset: precursor tolerance = 20  ppm, frag-
ment tolerance = 0.02  Da, NTT (the number of tryp-
tic termini) = 2, maximum missed cleavage = 2, fixed 
modification = carbamidomethyl on cysteine, vari-
able modification = methionine oxidation, min peptide 
length = 7, and max peptide length = 45. In addition, 
the following parameters were used for the S. cerevisiae 
dataset: precursor tolerance = 20  ppm, fragment toler-
ance = 0.5  Da, NTT = 2, maximum missed cleavage = 2, 
fixed modification = carbamidomethyl on cysteine, vari-
able modification = methionine oxidation, min peptide 
length = 7, and max peptide length = 45.
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False discovery rate and correction factor
In general, the target-decoy strategy uses the following 
equation to estimate the FDR [13]:

Here, #Target denotes the number of target PSMs, and 
#Decoy represents the number of decoy PSMs.

To avoid the overestimation problem, Elias and Gygi 
proposed using the correction factor when the FDR is 
estimated. The correction factor can easily be obtained 
by the methods introduced by Elias and Gygi or by Kim 
et al. [1, 7, 14]. The method proposed by Elias and Gygi 
is called Factor 1 (RRatio), and it can be carried out using 
the ratio of the target and decoy PSMs at lower ranks, as 
follows:

Here, #Targetlower denotes the number of target PSMs 
at a lower rank, and #Decoylower is the number of decoy 
PSMs at a lower rank. PSMs with a lower rank refer to 
rank 5 PSMs.

The method proposed by Kim et  al. is called Factor 2 
(UPRatio), and it can be calculated using the ratio of the 
target to the decoy unique peptides of the database, as 
follows:

Here, #UTP and #UDP are, respectively, the numbers 
of unique target peptides and unique decoy peptides in 
the database.

The FDR is estimated with the correction factor as 
follows:

Results and discussion
We denote the results with 1% FDR from the reverse, 
shuffle, pseudo-reverse, pseudo-shuffle, and de Bruijn 
methods as FDRR, FDRS, FDRPR, FDRPS, and FDRD, 
respectively.

Saccharomyces cerevisiae dataset
We compared the results for the identified PSMs with 
the 1% FDR using the S. cerevisiae Elite and 2DLC data-
set, the protein database, and various decoy databases. 
As shown in Fig.  1a and in Supplementary Figure  1b, 

FDRcommon =

#Decoy

#Target

Factor1 =
#Decoylower
#Targetlower

Factor2 =
#UDP

#UTP

FDRfactor =
#Decoy

#Target
×

1

Factor

the numbers of PSMs for FDRR, FDRS, FDRPR, FDRPS, 
and FDRD were nearly identical regardless of the decoy 
construction method. (For consideration of the varia-
tion in the shuffle, pseudo-shuffle, and de Bruijn method, 
the results additional databases, in this case four shuffle, 
four pseudo-shuffle, and four de Bruijn databases, were 
compared, as shown in Supplementary Figures 1a and b. 
There was no variation in the shuffle, pseudo-shuffle, and 
de Bruijn methods.)

HEK293 datasets
We used two HEK293 datasets, called the HEK293 3-rep-
licate dataset and the HEK293 24-fraction dataset, and 
compared the results for the identified PSMs with the 1% 
FDR among various decoy databases. Figures 1b and 1c 
show the comparison outcomes for FDRR, FDRS, FDRPR, 
FDRPS, and FDRD. The numbers of PSMs for FDRR, 
FDRPR, and FDRD were nearly identical, but the num-
bers of PSMs for FDRS and FDRPS were, in the HEK293 
3-replicate dataset, about 6% lower, and in the HEK293 
24-fraction dataset, they were about 8% lower than those 
for FDRR, FDRPR, and FDRD. Hence, the FDR is overes-
timated for FDRS and FDRPS, unlike in the S. cerevisiae 
datasets. Additionally, we used ten cell line datasets and 
compared the results for the identified PSM with the 1% 
FDR outcomes among the various decoy databases. Sup-
plementary Figure  2 shows the comparison results for 
FDRR, FDRS, FDRPR, FDRPS, and FDRD. The numbers of 
PSMs for FDRR, FDRPR, and FDRD were nearly identi-
cal, but the numbers of PSMs for FDRS and FDRPS were 
about 9% (on average) lower than those for FDRR, FDRPR, 
and FDRD.

The ratio of unique and redundant peptides in the S. 
cerevisiae and the human protein database
We compared the ratio of unique (non-redundant) pep-
tides in the target database and various decoy databases 
to analyze the cause of FDR overestimation for FDRS and 
FDRPS in the HEK293 datasets. Unique peptides were 
generated with the following parameters: missed cleav-
age = 2, min length = 2, max length = 45, and NTT = 2. 
As shown in Figs. 1a and 1b, in the S. cerevisiae protein 
database, the ratios of unique targets and unique decoy 
peptides in the reverse database are nearly identical at 
49.97:50.03. Shuffle databases have a ratio of 47.19:52.81 
on average, the ratios for the pseudo-reverse and de 
Bruijn databases are 50.05:49.95 and 49.97:50.03 (on 
average), and the ratio for the pseudo-shuffle database is 
48.45:51.55 on average. In the human protein database, 
the ratio of unique targets and unique decoy peptides 
for the reverse database is 49.91:50.09, the ratios for the 
pseudo-reverse and de Bruijn databases are 50.06:49.94 
and 49.70:50.30 (on average), whereas shuffle databases 
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have a ratio of 18.02:82.98 on average, and pseudo-shuffle 
databases show a ratio of 19.19:80.81 on average. (The 
ratios of another four shuffle databases, four pseudo-
shuffle databases, and four de Bruijn database are shown 
in Supplementary Figure 1).

We found that when the (pseudo) shuffle decoy data-
base is used, the ratios of unique peptides of a target 
database and a decoy database differ significantly in the 
human protein database. To find the reason for this, 
the ratios of redundant peptides in the S. cerevisiae and 
human target databases were compared. A redundant 
peptide refers to an overlapping peptide from among 
all peptides in the target database. For example, when 
protein A is “ATCDEFRGHIPKLNP” and protein B is 
“YKLMNWRGHIPK,” the tryptic peptide “GHIPK,” 
which is common to proteins A and B, is termed a redun-
dant peptide. The redundant peptides of the S. cerevisiae 
target database amounted to 7.09% of all peptides, and 
the redundant peptides in the human target database 
amounted to 77.38% of all peptides (Fig. 1d).

The ratio of redundant peptides has a considerable 
influence on the ratio of unique peptides when a decoy 
database is created using the (pseudo) shuffle method. 

For example, when there are three overlapping peptides 
“ACDEFG” in the target database, the (pseudo) reverse 
method creates three identical peptides “GFEDCA”. 
Because the overlapping peptides are removed, the 
unique peptide created when the (pseudo) reverse 
method is used has only one unique peptide in each of 
the target and decoy databases. However, given that the 
(pseudo) shuffle method creates three different peptides, 
such as “FEGDCA,” “AFEDCG,” and “DCAGEF,” the 
unique peptides created by the (pseudo) shuffle method 
consist of one unique peptide in the target database and 
three unique peptides in the decoy database. Eventually, 
as the ratio of redundant peptides increases, if the decoy 
database is created using the (pseudo) shuffle method, an 
imbalance of unique peptides occurs, as shown in Figs. 1a 
and 1b. As a result, as shown in Figs. 1b and 1c, FDRS and 
FDRPS have fewer PSMs compared to FDRR, FDRPR, and 
FDRD.

The correction factor is needed when estimating the FDR
We compared the 1% FDR results with the correction 
factor proposed by Elias and Gygi (Factor 1) [7] and that 
by Kim et al. (Factor 2) [14] and without the correction 

Fig. 1  Comparison of the number of PSMs among various databases of typical size and number of target and decoy unique peptides. a, b, c The 
blue bars show the numbers of PSMs for 1% FDR without the correction factor. The orange bars show the numbers of PSMs for 1% FDR using Factor 
2. The gray bars show the numbers of PSMs for 1% FDR using Factor 1. The yellow line show the ratio of target and decoy unique peptide ratio. 
a The UniProt S. cerevisiae protein database and the S. cerevisiae Elite dataset. b The UniProt human protein database and the HEK293 3-replicate 
dataset. c The UniProt human protein database and the HEK293 24-fraction dataset. d The blue bars show the ratios of all peptides to unique 
peptides. The red bars show the ratios of all peptides to redundant peptides. Comparison of the ratio of unique and redundant peptides for the S. 
cerevisiae and human protein databases
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factor. As shown in Fig.  1a and in Supplementary Fig-
ure  1b, in the S. cerevisiae protein database, FDRR and 
FDRPR with the correction factor showed about -0.14 and 
0.08% (on average) for the S. cerevisiae Elite dataset, and 
about -0.07 and -0.12% (on average) for the S. cerevisiae 
2DLC dataset more(more less) PSMs compared to those 
without the correction factor. In addition, FDRS, FDRPS 
and FDRD with the correction factor showed correspond-
ing increases in the number of PSMs of about 0.89, 0.64 
and -0.19% (on average) for the S. cerevisiae Elite dataset 
and about 0.67, 0.43, and -0.07% (on average) for the S. 
cerevisiae 2DLC dataset.

As presented in Figs.  1b and c, for the human protein 
database, FDRR, FDRPR, and FDRD with the correction fac-
tor showed increases in the number of PSMs of about -0.06, 
-0.02, and -0.17% (on average) for the HEK293 3-replicate 
dataset, and by about 0.0%, 0.0% (identical), and -0.23% (on 
average) for the HEK293 24-fraction dataset. On the other 
hand, FDRS and FDRPS with the correction factor showed 
increases in the number of PSMs by about 7.82 and 7.74% 
(on average) for the HEK293 3-replicate dataset and by about 
12.20 and 12.58% (on average) for the HEK293 24-frac-
tion dataset on average. (The results of another four shuffle 
databases, four pseudo-shuffle databases, and four de Bruijn 
databases are presented in Supplementary Figure  1) Addi-
tionally, as shown in Supplementary Figure 2, FDRR, FDRPR, 
FDRD with the correction factor showed increases in the 
number of PSMs by about -0.12,- 0.08 and -0.14% (on aver-
age) for the ten cell line datasets. On the other hand, FDRS 
and FDRPS with the correction factor showed increases in 
the number of PSMs by about 12.35 and 12.46% (on average) 
for ten cell line datasets on average.

These results indicate that FDRR, FDRPR, and FDRD in 
both the S. cerevisiae and human protein databases showed 
slight differences regardless of whether or not the FDR was 
estimated with the correction factor. In the S. cerevisiae pro-
tein database, there was little difference between FDRS 
(and FDRPS) with the correction factor and FDRS (and 
FDRPS) without the correction factor. However, in the 
human database, when FDRS (and FDRPS) with the cor-
rection factor and FDRS (and FDRPS) without the correc-
tion factor were compared, we found that the number 
of PSMs for FDRS (and FDRPS) with the correction fac-
tor increased significantly. In other words, in the human 
protein database, if the FDR was estimated using the 
(pseudo) shuffle database without the correction factor, 
it was overestimated. Accordingly, it is important to esti-
mate the FDR with the correction factor.

The S. cerevisiae and the human six frame translation 
database
We used 6FT databases to analyze the degree of FDR 
overestimation for FDRS and FDRPS in large databases. 

First, the ratio of unique peptides in the target database 
and various decoy databases is compared for 6FT data-
bases. Unique peptides were generated with the follow-
ing parameters: missed cleavage = 2, min length = 2, 
max length = 45, and NTT = 2. As shown in Fig.  2, in 
the S. cerevisiae 6FT database, the ratio of unique tar-
gets and unique decoy peptides in the reverse, pseudo 
reverse and the de Bruijn databases are nearly identical 
at 50.03:49.97, 50.04:49.96, and 49.72:50.28, respectively. 
For S. cerevisiae, the shuffle and pseudo shuffle databases 
have ratios of 25.67:74.33 and 27.30:72.70, respectively. 
In the human 6FT database, the ratio of unique target 
and unique decoy peptides in the reverse, pseudo reverse 
and de bruijn database are nearly identical at 50.45:49.55, 
50.45:49.55, and 50.24:49.76, respectively. The shuffle and 
pseudo shuffle databases have corresponding ratios of 
44.02:55.98 and 45.67:54.33.

As shown in Supplementary Figure  3, these results 
indicate that FDRR, FDRPR, FDRD in both the S. cerevisiae 
and human protein databases showed slight differences 
regardless of whether or not the FDR was estimated 
with the correction factor. However, in the S. cerevisiae 
6FT database, FDRS and FDRPS with the correction fac-
tor showed corresponding increases in the number of 
PSMs by about 9.81 and 9.90% (on average) for the S. 
cerevisiae Elite dataset, and by about 7.88 and 8.29% (on 
average) for the S. cerevisiae 2DLC dataset. In the human 
6FT database, FDRS and FDRPS with the correction factor 
showed corresponding increases in the number of PSMs 
by about 1.62 and 1.10% (on average) for the HEK293 
3-replicate dataset, and by about 2.22 and 1.73% (on aver-
age) for the HEK293 24-fraction dataset.

In addition, we ran a comparison using the separate 
FDR [15] which is often used in proteogenomics. For the 
separate FDR, we divided known databases and novel 
databases. It is easy to divide known and novel databases 
for the reverse, pseudo reverse, De bruijn decoy data-
bases, but not for the shuffle and pseudo shuffle decoy 
databases. We note that the known database is the Uni-
Prot database and its decoy database and the novel data-
base is the 6FT database apart from the known database. 
In addition, we calculated the correction factor using 
these known and novel databases. As shown in Sup-
plementary Figure  3 and Supplementary Table  2, FDRR, 
FDRPR and FDRD of the S. cerevisiae and human protein 
databases show the same number of PSMs, even if the 
correction factor is used. In the S. cerevisiae 6FT data-
base, FDRS and FDRPS with the correction factor showed 
corresponding increases in the number of PSMs by about 
0.93 and 0.31% in known PSMs and by about 35.00 and 
8.70% in novel PSMs for the S. cerevisiae Elite dataset, 
also showing corresponding increases in the number of 
PSMs of about 0.77 and 0.46% in the known PSMs and 
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of about 11.24 and 81.13% in the novel PSMs for the S. 
cerevisiae 2DLC dataset. In the human 6FT database, 
FDRS and FDRPS with the correction factor showed cor-
responding increases in the number of PSMs by about 
5.82 and 6.00% in the known PSMs and by about 0.03 
and 0.00% (identical) for the novel PSMs for the HEK293 
3-replicate dataset, and showed increases in the number 
of PSMs by about 12.32%, 13.07% in known PSMs and 
by about 2.71%, 0.00% (the same) in novel PSMs for the 
HEK293 24-fraction dataset. We used a simple method to 
divide known and novel databases. However, it is likely 
difficult to divide known and novel databases for the 
separate FDR. In proteogenomics for the separate FDR, 
we do not recommend the use of the shuffle and pseudo 
shuffle decoy databases, because it is difficult to divide 
known and novel database.

Conclusion
We used various decoy construction methods in the S. 
cerevisiae and human protein databases to comparison 
the results of the 1% FDR. When the ratio of redundant 
peptides in the target database is low (that is, when the 
ratio of unique peptides in the target and decoy databases 

is nearly identical), such as in the S. cerevisiae protein 
database, regardless of which decoy construction method 
is used, the FDR is not overestimated. However, if the 
ratio of redundant peptides in the target database is high 
(i.e., the ratio of unique peptides in the target and decoy 
databases differs significantly), such as in a human pro-
tein database, if the (pseudo) shuffle method is used, the 
FDR is overestimated. Therefore, the FDR must be esti-
mated using the correction factor to avoid FDR overes-
timation. Additionally, the human and S. cerevisiae six 
frame translation databases, which are large databases, 
also showed outcomes similar to that of the UniProt 
human protein database. In contrast, in proteogenom-
ics, we do not recommend the use of shuffle and pseudo 
shuffle decoy databases for the separate FDR given that, it 
is difficult to divide known and novel databases, as men-
tioned above. Additional research is needed to devise 
a new method capable of dividing known and novel 
databases.
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spectrum match; MS/MS: Tandem mass spectrometry; NTT: Number of tryptic 

Fig. 2  Comparison of the numbers of PSMs of various databases of large size (six-frame translation). The blue bars show the numbers of PSMs for 
1% FDR. The orange bars show the numbers of PSMs for 1% FDR using Factor2. The gray bars show the numbers of PSMs for 1% FDR using Factor 
1. The yellow line show the ratio of target and decoy unique peptide ratio. a The S. cerevisiae six frame translation protein database and S. cerevisiae 
Elite dataset. b The human six frame translation protein database and the HEK293 3-Replicate dataset. a The S. cerevisiae six frame translation protein 
database and S. cerevisiae 2DLC dataset. b The human six frame translation protein database and the HEK293 24-Fraction dataset
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protein database and S. cerevisiae 2DLC dataset. (d) The human six frame 
translation protein database and the HEK293 24-Fraction dataset.
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